PrepSEQ™ Express Nucleic Acid Extraction Kit
USER GUIDE

Automated sample preparation protocols for *Mycoplasma*, MMV, and Vesivirus detection

for use with:
AutoMate *Express™* Instrument

Catalog Number 4466351
Publication Number MAN0016799
Revision A.0
The information in this guide is subject to change without notice.

DISCLAIMER: TO THE EXTENT ALLOWED BY LAW, LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Revision history: Pub. No. MAN0016799

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>

Important Licensing Information: These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

TRADEMARKS: All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

©2018 Thermo Fisher Scientific Inc. All rights reserved.
Contents

■ CHAPTER 1 Product information ... 5
 Product description ... 5
 Kit applications ... 5
 Contents and storage .. 6
 Required materials not supplied .. 6

■ CHAPTER 2 Lysate, Magnetic Particle, and positive control guidelines 8
 Guidelines for preparing sample lysates that contain target DNA 8
 Guidelines for working with PrepSEQ™ Express Cartridges 9
 Guidelines for working with the AutoMate Express™ Instrument 9
 (Recommended) Run extraction controls 9

■ CHAPTER 3 Automated protocol for Mycoplasma, MMV, and/or Vesivirus detection 10
 Prepare test samples ... 10
 Next steps ... 10
CHAPTER 4 Large-scale automated protocol for *Mycoplasma* detection ... 11

Prepare materials .. 11
Prepare test samples ... 11
Option 1: Direct sample testing ... 12
 Separate mammalian cells from cell culture media .. 12
 Treat with RNase and DNase .. 13
 Process the supernatant to obtain resuspended *Mycoplasma* ... 13
 Treat the resuspended *Mycoplasma* ... 14
 Next steps .. 14

Option 2: Process pooled cell culture media and mammalian cells ... 15
 Separate mammalian cells from cell culture media .. 15
 Treat with RNase and DNase .. 16
 Process the supernatant to obtain the *Mycoplasma* pellet ... 16
 Process the mammalian cell pellet to obtain free *Mycoplasma* and combine with the *Mycoplasma* pellet .. 17
 Treat the resuspended *Mycoplasma* ... 17
 Next steps .. 17

CHAPTER 5 Set up and run automated DNA extraction ... 18

Inspect cartridges .. 19
Insert a protocol card .. 19
Load and insert the cartridge rack ... 21
Load and insert the tip and tube rack .. 23
Start an automated extraction run .. 25
Complete the run and store the extracted DNA ... 25

APPENDIX A Troubleshooting ... 27

Troubleshooting .. 27

APPENDIX B Safety .. 31

Chemical safety .. 32
Biological hazard safety .. 33

Documentation and support ... 34

Related documentation .. 34
Customer and technical support .. 34
Limited product warranty ... 34
Product description

The PrepSEQ™ Express Nucleic Acid Extraction Kit (Cat. No. 4466351) is for use with the AutoMate Express™ Instrument. The kit includes pre-filled reagent cartridges for automated extraction of DNA and/or RNA from Mycoplasma cells or viral particles. A variety of starting material can be used, such as infected cell cultures or Mycoplasma liquid cultures.

Kit applications

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Sample volume</th>
<th>For use with kit</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma, MMV, and Vesivirus</td>
<td>300 µL (up to 10^6 total cells)</td>
<td>PrepSEQ™ Express Nucleic Acid Extraction Kit and the AutoMate Express™ Instrument</td>
<td>Chapter 3, “Automated protocol for Mycoplasma, MMV, and/or Vesivirus detection”</td>
</tr>
<tr>
<td>Mycoplasma</td>
<td>Up to 15 mL (up to 10^6 cells/mL)</td>
<td>PrepSEQ™ Express Nucleic Acid Extraction Kit and the AutoMate Express™ Instrument</td>
<td>Chapter 4, “Large-scale automated protocol for Mycoplasma detection”</td>
</tr>
</tbody>
</table>
Contents and storage

<table>
<thead>
<tr>
<th>Contents</th>
<th>Amount</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrepSEQ™ Express Cartridges</td>
<td>1 box of 52</td>
<td>18–25°C (room temperature), foil-side up</td>
</tr>
<tr>
<td>Lysis Tubes, capless</td>
<td>1 pack of 52</td>
<td>18–25°C (room temperature)</td>
</tr>
<tr>
<td>Sample Tubes</td>
<td>1 pack of 52 1.5-mL tubes and screw caps</td>
<td></td>
</tr>
<tr>
<td>Elution Tubes</td>
<td>1 pack of 52 hinged-cap tubes</td>
<td></td>
</tr>
<tr>
<td>AutoMate Express™ Tips and Tip Holders</td>
<td>1 pack of 52 sets</td>
<td></td>
</tr>
</tbody>
</table>

Required materials not supplied

Unless otherwise indicated, all materials are available through thermofisher.com. MLS: Fisher Scientific (fisherscientific.com) or other major laboratory supplier.

Table 1 All protocols

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td></td>
</tr>
<tr>
<td>AutoMate Express™ Nucleic Acid Extraction System</td>
<td>4467754</td>
</tr>
<tr>
<td>Laboratory supplies</td>
<td></td>
</tr>
<tr>
<td>Heat block with block inserts, for use with 2-mL tubes</td>
<td>MLS</td>
</tr>
<tr>
<td>Vortex-Genie™ 2T Mixer</td>
<td>VWR™ Scientific Industries (14216-188 or 14216-186)</td>
</tr>
<tr>
<td>Eppendorf™ PCR Clean Microcentrifuge Tubes (Safe-Lock, 2 mL, round-bottom)</td>
<td>VWR™ Scientific Industries [62111-754]</td>
</tr>
<tr>
<td>Benchtop microcentrifuge (13,000 × g or greater), for use with 2-mL tubes</td>
<td>MLS</td>
</tr>
<tr>
<td>Optional/Fisher Scientific™ Mini Plate Spinner Centrifuge</td>
<td>14-100-143</td>
</tr>
<tr>
<td>Serological pipettes</td>
<td>MLS</td>
</tr>
<tr>
<td>Nonstick, RNase-free Microfuge Tubes (1.5 mL)</td>
<td>AM12450</td>
</tr>
<tr>
<td>Reagents</td>
<td></td>
</tr>
<tr>
<td>EDTA, 0.5 M</td>
<td>AM9260G</td>
</tr>
<tr>
<td>Optional/1X PBS, calcium- and magnesium-free, pH ~7</td>
<td>MLS</td>
</tr>
</tbody>
</table>
Table 2 Large-scale protocols

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory supplies</td>
<td></td>
</tr>
<tr>
<td>Refrigerated centrifuge (2-8°C, 16,000 × g), for use with 50-mL tubes</td>
<td>MLS</td>
</tr>
<tr>
<td>Conical Tubes (50 mL)</td>
<td>AM12502</td>
</tr>
<tr>
<td>Ice bucket</td>
<td>MLS</td>
</tr>
<tr>
<td>Reagents</td>
<td></td>
</tr>
<tr>
<td>Proteinase K, 20 mg/mL</td>
<td>AM2548</td>
</tr>
<tr>
<td>PrepSEQ™ Lysis Buffer</td>
<td>A29825</td>
</tr>
<tr>
<td>Cell Fractionation Buffer</td>
<td>4403461</td>
</tr>
<tr>
<td>(Optional) For samples with high SYBR™ dye background: TURBO™ DNase [2 U/µL includes TURBO™ DNase and 10× Reaction Buffer]</td>
<td>AM2239</td>
</tr>
<tr>
<td>(Optional) RNase Cocktail™ Enzyme Mix</td>
<td>AM2286</td>
</tr>
</tbody>
</table>
Lysate, Magnetic Particle, and positive control guidelines

- Guidelines for preparing sample lysates that contain target DNA 8
- Guidelines for working with PrepSEQ™ Express Cartridges 9
- Guidelines for working with the AutoMate Express™ Instrument 9
- (Recommended) Run extraction controls ... 9

Guidelines for preparing sample lysates that contain target DNA

Minimizing cellular DNA and/or RNA in the final extracted DNA is critical to Mycoplasma DNA detection. High amounts of cellular DNA and/or RNA cause PCR inhibition and high background of the SYBR™ Green I dye signal, reducing detection of low copy numbers of targets. Factors that affect levels of cellular DNA and/or RNA include:

- **Viability of cell culture sample**—Use fresh culture samples to increase the purity of your extracted target DNA. Avoid conditions such as long-term storage at 4°C (or freezing temperatures). Such temperatures cause increased death or lysis of cells, which contributes to additional background DNA in samples.

- In the large-scale protocols, when processing the mammalian cell pellet, keep it on ice and perform all processing steps at 4°C to avoid host cell nuclei lysis as much as possible. Room temperature increases lysis of nuclei and host DNA in the final extracted DNA, and causes PCR inhibition.

- In the large-scale protocols, if working with the mammalian cell pellet:
 - In some cases, the cell pellet is large and sticky and cannot be resuspended easily. Never vortex to resuspend the cells.
 - When transferring the cell culture supernatant, avoid touching the pellet, which contains nuclei and viscous material that may be generated from lysis of nuclei. If needed, use a P200 pipette to perform the transfer.
 - In the final transfer of the cell pellet supernatant, avoid contact with or transfer of the viscous material. If needed, recentrifuge the tube at 1000 × g for 3 minutes at 4°C, then very carefully transfer 300 µL (two 150-µL aliquots) with a P200 pipette.
Guidelines for working with PrepSEQ™ Express Cartridges

- Always use the plastics provided with the kit.
- Do not switch the supplied pre-filled reagents with any other buffers, because the protocols are specifically optimized with the reagents supplied with the kit.
- Mix the reagents and resuspend the Magnetic Particles in each cartridge:
 a. Hold the cartridge foil-side up on a vortexer set to maximum speed, then pulse (~3 seconds) 2–3 times. Repeat with the cartridge foil-side down, then repeat again with the cartridge on its side.
 b. Hold the cartridge foil-side up, then tap the cartridge on the counter several times to deposit any particles or liquid droplets into the bottom of the compartments.

 Note: Vortexing may result in foam in compartment 1 (Lysis Buffer). The foam disperses within minutes and does not affect the assay performance.

After resuspending the Magnetic Particles, use the cartridges within 2 hours, or perform this procedure again before using.

Guidelines for working with the AutoMate Express™ Instrument

Before using the instrument, see the AutoMate Express™ Instrument User Guide (Pub. No. 4441982) and review the sections on safety and operating the instrument.

(Recommended) Run extraction controls

IMPORTANT! Positive and/or negative extraction controls are primarily used during optimization or pre-validation testing. Extraction controls are not required, but we recommend that you run them.

The MycoSEQ™ Discriminatory Positive Control (DPC) provided with the MycoSEQ™ Mycoplasma Detection Kit is a multi-purpose control that can be used as an extraction positive control.

If you are running an extraction positive control, we recommend that you extract and analyze 1 replicate of the sample unspiked and 1 replicate of the sample spiked:

- **Sample 1, tube 1** — Test sample.
- **Sample 1, tube 2** — Test sample + DPC. Spike a volume of DPC to achieve 200 copies per PCR.
Automated protocol for *Mycoplasma*, MMV, and/or Vesivirus detection

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare test samples</td>
<td>Next steps</td>
</tr>
</tbody>
</table>

10

Use this protocol to process 300 µL of sample containing up to 10^6 total cells for the detection of *Mycoplasma*, MMV, and/or Vesivirus.

Prepare test samples

1. Add sample to each PrepSEQ™ Express Sample Tube (up to 13 tubes total):
 - For samples with ≤10^6 cells/mL — Add 300 µL of sample to each tube.
 - For samples with >10^6 cells/mL — Spin the sample in a microcentrifuge at $500 \times g$ for 2 minutes, then add 300 µL of the supernatant to the tube.

 If needed, add cell culture medium or 1X PBS to the samples to bring the total volume up to 300 µL.

2. Cap the tubes, then spin the tubes in a microcentrifuge at $1,000 \times g$ for 3 minutes at room temperature.

3. Carefully remove the tubes from the microcentrifuge. Do not disturb the cell pellet.

4. Remove the screw caps from the tubes.

5. Load the tubes in Row S (fourth row) of the tip and tube rack. (See “Load and insert the tip and tube rack” on page 23.)

6. *(Optional)* For an extraction positive control: Spike the appropriate amount of DPC to 300 µL of the prepared test sample to achieve 200 copies per PCR. Extraction controls can be dual- or triple-spiked with DPCs for each assay to conserve sample. You can also use one of the following in place of test samples: 1X PBS solution, Lysis Buffer, Cell Fractionation Buffer, or plain media.

Next steps

Proceed directly to Chapter 5, “Set up and run automated DNA extraction”.

PrepSEQ™ Express Nucleic Acid Extraction Kit for Mycoplasma, MMV, and Vesivirus Detection User Guide
Large-scale automated protocol for *Mycoplasma* detection

- Prepare materials ... 11
- Prepare test samples .. 11
- Option 1: Direct sample testing ... 12
- Option 2: Process pooled cell culture media and mammalian cells 15

Use this protocol to process up to 15 mL of sample (up to 10⁶ cells/mL) for the detection of *Mycoplasma*.

Prepare materials

1. Power on the refrigerated centrifuge to allow it to cool to 4°C before use.
2. Keep the samples on ice as much as possible during the sample lysate steps.

Prepare test samples

Prepare each sample in a new 50-mL conical tube:
- *(Options 1 and 2) ≤10⁶ cells/mL* — Add 15 mL of sample to the tube.
- *(Option 1 only) >10⁶ cells/mL* — Add 15 mL of sample to the tube, centrifuge at 1,000 × g for 5 minutes to pellet the cells, then transfer 15 mL of supernatant to a new 50-mL conical tube.
Option 1: Direct sample testing

Figure 1 Option 1: Direct sample testing

Separate mammalian cells from cell culture media

1. Obtain the 15-mL samples from “Prepare test samples” on page 11.
2. Centrifuge each tube at 1,000 $\times g$ for 5 minutes at 4°C to pellet the mammalian cells.
3. Transfer 15 mL of the supernatant to a new 50-mL conical tube, then place on ice. The supernatant contains free *Mycoplasma*.
4. Discard the mammalian cell pellet.
If the samples have high SYBR™ Green I dye background because of excess cellular nucleic acid in the supernatant, perform RNase treatment.

IMPORTANT! For some high-density samples, both RNase and DNase treatments are needed. In this case, perform the DNase treatment before the RNase treatment.

Treat with DNase

1. Add the following TURBO™ DNase (2 U/µL) components, then gently vortex to mix:
 - 450 µL of 10× Reaction Buffer
 - 90 µL of TURBO™ DNase

2. Incubate at 37°C for 30 minutes.

Treat with RNase

1. Add the following components, gently vortex to mix, then briefly spin:
 - 180 µL of 0.5 M EDTA
 - 225 µL of RNase Cocktail™ Enzyme Mix
 - 150 µL of Proteinase K

 Note: Alternatively, you can prepare a stock mix of EDTA, Proteinase K, and RNase Cocktail™ Enzyme Mix, then add 555 µL of stock mix to each sample.

2. Incubate at 56°C for a minimum of 30 minutes to digest the cellular RNA and proteins.

Process the supernatant to obtain resuspended Mycoplasma

1. Centrifuge the tube at 16,000 × g for 30 minutes at 4°C to pellet the Mycoplasma.

2. Aspirate and discard the supernatant without disturbing the Mycoplasma pellet. Do not decant the liquid and do NOT touch the pellet.

3. Add 275 µL of Lysis Buffer, then mix thoroughly by vortexing to resuspend the Mycoplasma pellet.
 If the pellet is difficult to dislodge, vigorously agitate the tube.

4. Transfer the resuspended pellet to a PrepSEQ™ Express Sample Tube.
Separately process the resuspended *Mycoplasma* pellet in the PrepSEQ™ Express Sample Tube.

1. Add the following volumes, then briefly vortex to mix:
 - 2 µL of 0.5 M EDTA
 - 18 µL of RNase Cocktail™ Enzyme Mix
 - 5 µL of Proteinase K

2. *(Optional)* Spike with Discriminatory Positive Control (DPC) for optimization or with *Mycoplasma* DNA for lot release validation.

3. *(Optional)* For an extraction positive control: Spike the appropriate amount of DPC to 300 µL of the prepared test sample to achieve 200 copies per PCR. Extraction controls can be dual- or triple-spiked with DPCs for each assay to conserve sample. You can also use one of the following in place of test samples: 1X PBS solution, Lysis Buffer, Cell Fractionation Buffer, or plain media.

4. Incubate at 56°C for 15 minutes to digest the cellular RNA. Vortex twice during incubation.

Next steps

Proceed directly to Chapter 5, “Set up and run automated DNA extraction“.
Option 2: Process pooled cell culture media and mammalian cells

Separate mammalian cells from cell culture media

1. Obtain the 15-mL samples from “Prepare test samples” on page 11.
2. Centrifuge each tube at 1,000 \(\times g \) for 5 minutes at 4°C to pellet the mammalian cells.
3. Transfer 15 mL of the supernatant to a new 50-mL conical tube, then place on ice. The supernatant contains free *Mycoplasma*.
4. Remove residual supernatant from the mammalian cell pellet, then place the cell pellet on ice.
If the samples have high SYBR™ Green I dye background because of excess cellular nucleic acid in the supernatant, perform RNase treatment.

IMPORTANT! For some high-density samples, both RNase and DNase treatments are needed. In this case, perform the DNase treatment before the RNase treatment.

Treat with DNase

1. Add the following TURBO™ DNase (2 U/µL) components, then gently vortex to mix:
 - 450 µL of 10× Reaction Buffer
 - 90 µL of TURBO™ DNase
2. Incubate at 37°C for 30 minutes.

Treat with RNase

1. Add the following components, gently vortex to mix, then briefly spin:
 - 180 µL of 0.5 M EDTA
 - 225 µL of RNase Cocktail™ Enzyme Mix
 - 150 µL of Proteinase K

 Note: Alternatively, you can prepare a stock mix of EDTA, Proteinase K, and RNase Cocktail™ Enzyme Mix, then add 555 µL of stock mix to each sample.

2. Incubate at 56°C for a minimum of 30 minutes to digest the cellular RNA and proteins.

Process the supernatant to obtain the Mycoplasma pellet

1. Centrifuge the supernatant at 16,000 × g for 30 minutes at 4°C to pellet the *Mycoplasma*.
2. Carefully remove and discard the supernatant; retain the *Mycoplasma* pellet for use in the next section.

 IMPORTANT! Do not decant the liquid and do NOT touch the pellet. Use a P200 pipette to remove the last of the supernatant.

3. Place the 50-mL tube containing the *Mycoplasma* pellet on ice.
Perform this procedure during the 30-minute centrifugation step in the previous section.

1. Add 550 µL of ice-cold Cell Fractionation Buffer to the mammalian cell pellet. Gently vortex or pipet up and down several times with a P1000 pipette to completely resuspend the mammalian cells. If the pellet is difficult to dislodge, vigorously agitate the tube.

2. Transfer the mammalian cell suspension to a 2-mL microcentrifuge tube, then place on ice for 5 minutes.

3. Centrifuge the 2-mL tube at 1,500 × g for 10 minutes at 4°C to pellet the cellular membranes and nuclei.

4. Carefully transfer 275 µL (two 137.5-µL aliquots) of the Cell Fractionation Buffer supernatant (mammalian cell lysate) to the Mycoplasma pellet obtained in the previous section. Avoid the pellet and viscous material.

5. Resuspend the Mycoplasma pellet in the supernatant by pipetting up and down or by vortexing on medium speed.

6. Transfer the resuspended Mycoplasma pellet to a new PrepSEQ™ Express Sample Tube.

Separately process the resuspended Mycoplasma pellet in the PrepSEQ™ Express Sample Tube.

1. Add the following volumes, then briefly vortex to mix:
 - 2 µL of 0.5 M EDTA
 - 18 µL of RNase Cocktail™ Enzyme Mix
 - 5 µL of Proteinase K

2. (Optional) Spike with Discriminatory Positive Control (DPC) for optimization or with Mycoplasma DNA for lot release validation.

3. (Optional) For an extraction positive control: Spike the appropriate amount of DPC to 300 µL of the prepared test sample to achieve 200 copies per PCR. Extraction controls can be dual- or triple-spiked with DPCs for each assay to conserve sample. You can also use one of the following in place of test samples: 1X PBS solution, Lysis Buffer, Cell Fractionation Buffer, or plain media.

4. Incubate at 56°C for 15 minutes to digest the cellular RNA. Vortex twice during incubation.

Proceed directly to Chapter 5, “Set up and run automated DNA extraction”.

Process the mammalian cell pellet to obtain free Mycoplasma and combine with the Mycoplasma pellet

Treat the resuspended Mycoplasma

Next steps
Set up and run automated DNA extraction

- Inspect cartridges .. 19
- Insert a protocol card ... 19
- Load and insert the cartridge rack 21
- Load and insert the tip and tube rack 23
- Start an automated extraction run 25
- Complete the run and store the extracted DNA 25
Inspect cartridges

1. Inspect the reagent cartridges to ensure that the contents are in the bottom of the wells and that no precipitate has formed in any of the wells.

![Figure 3 Cartridge compartments](image)

<table>
<thead>
<tr>
<th>Compartment</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lysis Buffer</td>
</tr>
<tr>
<td>2</td>
<td>Magnetic Particles suspension</td>
</tr>
<tr>
<td>3</td>
<td>Binding Solution</td>
</tr>
<tr>
<td>4 through 6</td>
<td>Wash Buffer</td>
</tr>
<tr>
<td>7</td>
<td>Elution Buffer</td>
</tr>
<tr>
<td>9</td>
<td>Proteinase K Solution</td>
</tr>
<tr>
<td>11</td>
<td>Lysis Tube (added by user)</td>
</tr>
<tr>
<td>12</td>
<td>Heated chamber for elution</td>
</tr>
</tbody>
</table>

2. If precipitate forms in compartments 1 or 2 (Lysis Buffer and Magnetic Particles suspension), heat the cartridge in an incubator at 37°C for 30 minutes or until the precipitate is no longer visible. Heat only those cartridges that you plan to use that day.

Insert a protocol card

For guidelines on handling protocol cards, see the *AutoMate Express™ Instrument User Guide*.

1. Confirm that the power switch is in the off position.

 Note: If you insert the card while the instrument is on, the instrument will not recognize the card.
2. Open the card slot.

3. Insert the protocol card in the slot, with the arrow pointing toward the instrument and the label facing left.

4. Push the card completely into the card slot, then close the card slot.

5. Power on the instrument.

When the card is fully inserted in the correct orientation, the display briefly shows information including the instrument version, then shows the **Main** menu.

IMPORTANT! Do not remove or insert the protocol card while the instrument is powered on. Removing the card stops the run, and it may cause instrument data file loss. If the card is removed during a run, immediately power off the instrument to minimize the potential for data loss.
Load and insert the cartridge rack

Wear gloves when you handle samples or load the cartridges, tips, and tubes in the rack.

1. Press **Start** to display step-by-step instructions for loading on the touchscreen.

2. Open the instrument door (push up the door), then remove the tip and tube rack and the cartridge rack.

3. Remove up to 13 cartridges from the kit box.
 Note: One cartridge is required per sample. Use only PrepSEQ™ Express Cartridges.

4. Prepare the reagent cartridges according to “Guidelines for working with PrepSEQ™ Express Cartridges” on page 9.
5. Load the reagent cartridges into the cartridge rack by sliding each reagent cartridge along the groove in the direction of the arrow until the reagent cartridge clicks into place. Ensure that the notches in the cartridge align with the notches in the cartridge rack.

Note: An incorrectly loaded cartridge rack can cause the instrument to stop during a run.

6. (IMPORTANT!) In each cartridge, insert a Lysis Tube in position 11.

7. Insert the loaded cartridge rack into the instrument.

WARNING! Do not touch the surface of the heat block. Touching the block can cause burns.
Load and insert the tip and tube rack

IMPORTANT! Follow these guidelines to avoid potential problems during the run:

- Load the cartridge rack into the instrument first, followed by the tip and tube rack. Loading the tip and tube rack first causes the instrument to stop during a run.
- Use only the supplied screw-cap tubes. Using other tubes will result in instrument or experiment failure.
- If you are processing fewer than 13 samples, load the tips and tubes in the same positions as the cartridges in the cartridge rack.

Note: Press after following each on-screen prompt.

1. Load the tip and tube rack in the following order:

 Note: If you are processing fewer than 13 samples, be sure to load the tips and tubes in the same positions as the PrepSEQ™ Express Cartridges that are loaded in the cartridge rack.

 a. **Row E**—Load PrepSEQ™ Express Elution Tubes, with the caps open and secured as shown in the photo.

 b. **Row T1**—Leave empty.

 c. **Row T2**—Load AutoMate Express™ tips inserted into tip holders.

 Note: One tip and tip holder set is required per sample.
Chapter 5 Set up and run automated DNA extraction

Load and insert the tip and tube rack

d. Row S—Load PrepSEQ™ Express Sample Tubes containing the lysate.

![Diagram of a 96-well plate with labels](image)

1. **Row E**—PrepSEQ™ Express Elution Tubes
2. **Row T1**—Empty row
3. **Row T2**—Tips and tip holders
4. **Row S**—PrepSEQ™ Express Sample Tubes

2. Insert the loaded tip and tube rack into the instrument with row E in the front.
Start an automated extraction run

1. Be sure that you have loaded and inserted the cartridge rack and tip and tube rack correctly, then close the instrument door.

2. Press \(\text{Start} \), then press 1 to select the PS Express 123 option.

3. Select:
 - 30 min for Lysis Time
 - 100 µL for Elution volume

4. Press Start.
 The screen shows the steps and the approximate run time remaining.

IMPORTANT! Do not open the door during a protocol run. To pause or cancel the run, see the AutoMate Express™ Instrument User Guide.

Note: If you lose power or the power cord is unplugged, the run stops. When the power resumes, the digital display shows the Main menu. You cannot resume the run. If the tips are still on the syringe unit when the power resumes, return the tips to the original positions as described in the AutoMate Express™ Instrument User Guide.

Complete the run and store the extracted DNA

At the end of the run, the instrument beeps briefly and the digital display shows “Finished Protocol”.

1. Open the instrument door, then remove and cap the Elution Tubes containing the purified DNA.

2. Store the purified DNA at 4°C for same-day use, or at –20°C for longer storage.

3. Run or skip the WastePooler protocol.
 Note: The WastePooler protocol separates the waste reagents containing guanidine thiocyanate from the alcohol-based waste reagents for easier waste disposal.

<table>
<thead>
<tr>
<th>To...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run the WastePooler protocol</td>
<td>1. Close the instrument door, then press Start.</td>
</tr>
<tr>
<td></td>
<td>Wait for the series of beeps indicating the end of the procedure.</td>
</tr>
<tr>
<td></td>
<td>2. Press (\text{Start}) to return to the Main menu.</td>
</tr>
<tr>
<td>Skip the WastePooler protocol</td>
<td>Press Esc to return to the Main menu.</td>
</tr>
</tbody>
</table>

4. Open the instrument door, then remove the cartridge rack and tip and tube rack.
5. Properly dispose of the used reagent cartridges, tips, and tubes.

WARNING! The used reagent cartridges may contain the following: guanidine thiocyanate, isopropanol, and ethanol. See the Safety Data Sheets and local, state, and national regulations for proper labeling, handling, and disposal.

WARNING! Do not add acids or bases (such as bleach) to any wastes containing Lysis Buffer (present in reagent cartridges or tubes). Acids and bases can react with guanidine thiocyanate in the Lysis Buffer and generate toxic gas.

6. Close the instrument door.

7. After each run, clean the tip and tube rack as needed. Follow the cleaning procedures in the *AutoMate Express™ Instrument User Guide* (Pub. No. 4441982).

Note: No cooling period is required between runs.
Review the information below to troubleshoot your experiments using the PrepSEQ™ Express Nucleic Acid Extraction Kit.

To troubleshoot operation of the AutoMate Express™ Instrument, see the AutoMate Express™ Instrument User Guide.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before loading the cartridges in the cartridge rack...</td>
<td>PrepSEQ™ Express Cartridges contain precipitate in some compartments.</td>
<td>Cartridges were exposed to low temperatures during the shipping or storage.</td>
</tr>
<tr>
<td>During the automated extraction run...</td>
<td>The AutoMate Express™ Instrument tip filters become wet.</td>
<td>Loose cell pellet or partial dispersion of cell pellet, resulting in partial or full clogging of the pipette tip.</td>
</tr>
<tr>
<td></td>
<td>The cartridge was placed into the cartridge rack incorrectly.</td>
<td>Before each run, confirm that cartridges are loaded as shown in step 5.</td>
</tr>
<tr>
<td></td>
<td>Pipette tips are hitting the bottom of the cartridge wells.</td>
<td>• If cartridges were loaded correctly, the instrument may require calibration in the z direction. Contact Technical Support. • Use only the supplied consumables (plastics).</td>
</tr>
<tr>
<td>During a run: There is not any liquid in the tip, or the liquid in the tip is not moving. After a run: There is no elution volume.</td>
<td>There is no sample in the tube or tips are clogged, resulting in a wet filter barrier on the tip and blocked nozzles.</td>
<td>Add samples to tubes, load new reagent cartridges, then perform the run again.</td>
</tr>
<tr>
<td>Observation</td>
<td>Possible cause</td>
<td>Action</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>During a run: There is not any liquid in the tip, or the liquid in the tip is not moving. After a run: There is no elution volume.</td>
<td>The sample volume is lower than the recommended volume or tips are clogged, resulting in a wet filter barrier on the tip and blocked nozzles.</td>
<td>In future runs, use the recommended sample volume for the protocol you are using. Long-term operation with lower-than-recommended sample volumes can lead to issues with liquid handling performance.</td>
</tr>
</tbody>
</table>

After quantifying extracted nucleic acid...

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No or low yield of nucleic acid</td>
<td>The biological sample contains no or a low amount of nucleic acid. Missed the sample centrifugation step before starting the automated extraction run. This can result in carry-over of cells, which may decrease the nucleic acid yield. The nucleic acid eluate contains PCR inhibitors due to excessive amount of inhibitors in the sample. Poor quality of starting material. Insufficient amount of Magnetic Particles added. Clogged tips resulting in nucleic acid loss.</td>
<td>Centrifuge samples before performing the automated extraction run. Run inhibition or internal positive controls according to the detection assay protocol. Make sure to process the sample immediately after collection or store the sample at the appropriate temperature. The yield and quality of nucleic acid isolated depends on the starting material. During shipping, some Magnetic Particles solution may adhere to the sealing foil of the cartridge. Resuspend the Magnetic Particles as described in “Guidelines for working with PrepSEQ™ Express Cartridges” on page 9. Ensure that the sample has been centrifuged at 1,000 × g for 3 minutes so that the cells are pelleted at the bottom of the Sample Tube. If needed, re-centrifuge the sample before loading the samples in the tip and tube rack. Before each run, confirm that the cartridges are loaded as shown in step 5. If the cartridges were loaded correctly, the instrument may require calibration in the z direction. Contact Technical Support.</td>
</tr>
<tr>
<td>Observation</td>
<td>Possible cause</td>
<td>Action</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>PCR inhibition (Figure 4) or high background signal (Figure 5).</td>
<td>Excess mammalian cell DNA in the sample.</td>
<td>For some high-density samples, both RNase and DNase treatments are needed. In this case, perform the DNase treatment before the RNase treatment. See “Treat with RNase and DNase” on page 13. Contact your local Field Applications Specialist or Sales Representative.</td>
</tr>
</tbody>
</table>

Figure 4 PCR inhibition; $\Delta C_T > 2$
Figure 5 High background signal
WARNING! GENERAL SAFETY. Using this product in a manner not specified in the user documentation may result in personal injury or damage to the instrument or device. Ensure that anyone using this product has received instructions in general safety practices for laboratories and the safety information provided in this document.

- Before using an instrument or device, read and understand the safety information provided in the user documentation provided by the manufacturer of the instrument or device.
- Before handling chemicals, read and understand all applicable Safety Data Sheets (SDSs) and use appropriate personal protective equipment (gloves, gowns, eye protection, etc). To obtain SDSs, see the “Documentation and Support” section in this document.
WARNING! GENERAL CHEMICAL HANDLING. To minimize hazards, ensure laboratory personnel read and practice the general safety guidelines for chemical usage, storage, and waste provided below. Consult the relevant SDS for specific precautions and instructions:

- Read and understand the Safety Data Sheets (SDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. To obtain SDSs, see the “Documentation and Support” section in this document.
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing).
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood).
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer’s cleanup procedures as recommended in the SDS.
- Handle chemical wastes in a fume hood.
- Ensure use of primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- After emptying a waste container, seal it with the cap provided.
- Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure that the waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.
- IMPORTANT! Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.
Biological hazard safety

WARNING! BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Conduct all work in properly equipped facilities with the appropriate safety equipment (for example, physical containment devices). Safety equipment can also include items for personal protection, such as gloves, coats, gowns, shoe covers, boots, respirators, face shields, safety glasses, or goggles. Individuals should be trained according to applicable regulatory and company/institution requirements before working with potentially biohazardous materials. Follow all applicable local, state/provincial, and/or national regulations. The following references provide general guidelines when handling biological samples in laboratory environment.

Documentation and support

Related documentation

<table>
<thead>
<tr>
<th>Document</th>
<th>Publication number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoMate Express™ Instrument User Guide</td>
<td>4441982</td>
</tr>
<tr>
<td>PrepSEQ™ Express Nucleic Acid Extraction Kit for Mycoplasma, MMV, and Vesivirus Detection Quick Reference</td>
<td>MAN0017291</td>
</tr>
</tbody>
</table>

Customer and technical support

Visit thermofisher.com/support for the latest in services and support, including:

- Worldwide contact telephone numbers
- Product support, including:
 - Product FAQs
 - Software, patches, and updates
 - Training for many applications and instruments
- Order and web support
- Product documentation, including:
 - User guides, manuals, and protocols
 - Certificates of Analysis
 - Safety Data Sheets (SDSs; also known as MSDSs)

Note: For SDSs for reagents and chemicals from other manufacturers, contact the manufacturer.

Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies’ General Terms and Conditions of Sale found on Life Technologies’ website at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have any questions, please contact Life Technologies at www.thermofisher.com/support.