The information in this guide is subject to change without notice.

DISCLAIMER: TO THE EXTENT ALLOWED BY LAW, THERMO FISHER SCIENTIFIC INC. AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Revision history: Pub. No. MAN0018045

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.0</td>
<td>27 April 2020</td>
<td>v1.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added protein thermal shift experiments to the instrument functions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added a 96-well 0.1-mL block.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated instructions to export data files when setting up a run and added instructions to import or delete export settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated instructions to save an edited run method.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated instructions to add or edit reagents and then to apply the reagents to the plate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated instructions to view the amplification plot after a run.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added instructions to view QC Check status after the run.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added information about a locked template file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added functions for using the instrument with the SAE Administrator Console.</td>
</tr>
<tr>
<td>D.0</td>
<td>7 January 2020</td>
<td>v1.2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added information about position to set up facial authentication and to sign in with facial authentication.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added instructions to test the connection to the Connect cloud-based platform and to view the privacy policy for the Connect platform.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added instructions to repair the software after a software update.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changed port 7000 to 7443 for the instrument-to-computer connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Corrected Ct to Cq in description of instrument verification.</td>
</tr>
<tr>
<td>C.0</td>
<td>3 December 2019</td>
<td>v1.2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added a 384-well plate block.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated instructions to set up facial authentication.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added a new voice command for calibration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added custom melt curve run calibration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added Security, Auditing, and E-signature (SAE) v2.0 module.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added instructions to generate and reset an access key for external software to connect to the instrument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added instructions to import an Assay Information File.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Corrected that a Connect profile is required for the instrument schedule and Smart Help.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added new radio compliance standards.</td>
</tr>
<tr>
<td>Revision</td>
<td>Date</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>B.0</td>
<td>22 August 2019</td>
<td>v1.1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Corrected the text on the buttons for the following items:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add facial authentication to an existing instrument profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• View the license agreement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reset the instrument (restore factory default).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added the following items:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TET™ dye as a system dye.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Information about sleep mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Information about the automatic sign-out feature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The option to configure the instrument so that sign-in is required (guest access is not permitted).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Instructions to set up email notification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Information about the speaker volume for each user.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Instructions to back up the instrument and to restore a backup of the instrument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Information about multiple instruments and email notification in the comparison of a local instrument profile and a Connect profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Instructions to unlink a Connect profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Instructions to update a PIN for a Connect profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lighting guidelines for facial authentication.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Radio compliance standards and RF transceiver specifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Corrected the following items:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Indicators for voice commands.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Voice commands are only available in select countries.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Instructions to remove VeriFlex™ Zones and the Auto Delta setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Excitation and emission wavelengths of the filters in the calibration instructions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add a four-digit PIN when signing into the instrument for the first time using a Connect profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add a four-digit PIN when linking a local instrument profile to a Connect profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Select a region for the Connect cloud-based platform.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A run cannot be started if a block has never been calibrated on the instrument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The options after a calibration run is complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The example files for the desktop software are embedded in the software and do not need to be downloaded.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated the following items:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cq Export checkbox is selected as the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Instructions to sign in with facial authentication.</td>
</tr>
<tr>
<td>A.0</td>
<td>18 April 2019</td>
<td>New document (v1.0.1).</td>
</tr>
</tbody>
</table>

Important Licensing Information: These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

NOTICE TO PURCHASER: DISCLAIMER OF LICENSE: Purchase of this software product alone does not imply any license under any process, instrument or other apparatus, system, composition, reagent or kit rights under patent claims owned or otherwise controlled by Thermo Fisher Scientific, either expressly, or by estoppel.

Trademarks: All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. TaqMan is a registered trademark of Roche Molecular Systems, Inc., used under permission and license. Cy is a registered trademark of GE Healthcare, Amazon, Alexa, and all related logos are trademarks of Amazon.com, Inc. or its affiliates. Windows is a trademark of Microsoft Corporation. Chrome is a trademark of Google LLC. Pentium is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Macintosh is a trademark of Apple Inc., registered in the U.S. and other countries.

©2020 Thermo Fisher Scientific Inc. All rights reserved.
Contents

■ CHAPTER 1 Product information .. 13

 Network and password security requirements .. 13
 Network configuration and security .. 13
 Password security ... 13

 Instrument hardware description ... 14
 Overview of the instrument ... 14
 Features of each instrument ... 15
 Instrument filters and supported dyes .. 15
 Overview of data collection .. 17
 VeriFlex™ Zones .. 17
 AutoDelta settings .. 18
 Parts of the instrument .. 19
 Instrument status indicator ... 21

 Hands-free features .. 21
 Facial authentication ... 21
 Voice activation ... 21
 Indicators for the hands-free features .. 22

 Software description ... 23
 Parts of the home screen ... 23
 Connect and Cloud definitions .. 25
 Instrument, desktop software, and Connect platform features 25
 Overview of file locations and files ... 26
 Components of the files ... 29
 Third-party software ... 30
 Network connection options .. 30

 Types of runs ... 30
 Standard curve run .. 30
 Relative standard curve run .. 31
 Comparative $C_t (\Delta\Delta C_t)$ run ... 31
 Genotyping run .. 32
 Presence/absence run ... 32
 Melt curve run ... 32
CHAPTER 2 Get started .. 39
Precautions for use ... 39
Installation and instrument verification 40
Overview of guest access ... 40
Use the instrument as a guest .. 41
Power on the instrument ... 42
Sign in .. 43
Sign in with a PIN .. 43
Sign in with facial authentication .. 43
Enable or disable the microphone .. 44
Use voice commands ... 44
Sign out .. 45

CHAPTER 3 Create and run plates on the instrument 46
Options to run a plate .. 46
Create and run a plate from a system template or a saved plate file ... 46
Repeat the last run ... 48
Overview of customized data export 49
(Optional) Scan a barcode using a barcode scanner 50
Load a plate into the instrument ... 50
Unload a plate from the instrument 51

CHAPTER 4 Edit a plate before starting a run 52
Overview of a template file with restricted editing 52
Options to edit the properties of a plate file 53
Import a sample setup ... 53
Import an auto export setting .. 53
Delete an auto export setting ... 53
Options to edit the method of a plate file 54
Method elements .. 55
Edit the method ... 55
Add or remove steps ... 56
Add or remove stages .. 56
Add or remove data collection locations 56
Set up or remove VeriFlex™ Zones 57
Set up or remove the Auto Delta feature .. 58
Configure ramp rates ... 59
Add or remove a pause ... 59
Options to edit the well details of a plate file 60
Options to view a plate layout ... 60
View a 384-well plate ... 61
Assign or edit a well ... 62
Add or edit the reagent details .. 63
Apply the reagents to a plate ... 63
Delete the reagent details .. 63
Edit a passive reference dye ... 64
Import an Assay Information File (AIF) .. 64

■ CHAPTER 5 Options for a run .. 65

Screens available during a run .. 65
Edit a plate file during a run ... 66
Pause an instrument run ... 67
Stop an instrument run .. 67
View the method during a run ... 68
View real-time data and plots during a run .. 68
Adjust the display of real-time plots during a run 69
View the time remaining during a run .. 69
Lock the touchscreen during a run .. 69
Unlock the touchscreen during a run .. 70
Instrument Schedule .. 70
 Overview of the instrument schedule ... 70
 Schedule a run ... 70
 Cancel a scheduled run ... 71

■ CHAPTER 6 View and manage files ... 72

Manage plate files ... 72
Copy plate files .. 72
Delete plate files .. 73
Manage data files .. 73
View QC Check status after a run ... 73
View an amplification plot after a run ... 75
Transfer a data file immediately after a run 76
Transfer data files at a later time ... 76
View the list of data files on the instrument 77
Delete data files from the instrument .. 77
CHAPTER 7 Calibrate and verify instrument performance

Instrument and block calibration 79
Calibration and verification schedule 80
Calibration descriptions ... 81
View the calibration status and set reminders 81
 View the calibration status on the instrument 81
 Set calibration frequency and reminders on the instrument 82
 View calibration status and set reminders on the Connect platform 82
Export a calibration report 83
Perform ROI/uniformity, background, and dye calibrations 84
 Calibration workflow .. 84
 Prepare a calibration plate 84
 Perform calibrations ... 86
 View the calibration images 87
 Transfer calibration results 89
 Transfer calibration data files 89
 Troubleshoot calibration failure 89
 Identify contamination 90
Create a background plate (optional) 90
Perform verification using RNase P plates 91
 Instrument verification description 91
 RNase P instrument verification plate 92
 Performance specifications pass criteria 93
 Prepare an RNase P plate 93
 Perform RNase P verification 94
 Troubleshoot verification failure 96
Calibrate custom dyes .. 98
 Overview of custom dyes 98
 Use a dilution series to determine an optimal custom dye concentration 98
 Calibrate the custom dye 101
 Calibrate for a custom melt curve run 104

CHAPTER 8 Manage profiles

Require sign-in .. 107
Recommended order to set up profiles 108
Overview of local instrument profiles and Connect profiles ... 108
Connect instrument profile roles and functions 109
Test the connection to the Connect platform 109
Link the instrument to your Connect account 111
Create a new local instrument profile 112
Link a local profile to a Connect profile 113
Unlink a Connect account 114
If you link when you are signed in to the instrument .. 115
If you link when you are not signed in to the instrument .. 116
Manage individual instrument profiles ... 117
 Create an administrator instrument profile during initial start-up 117
 Set up facial authentication at the initial creation of an instrument profile 117
 Add facial authentication to an existing instrument profile 118
 Change the PIN for an instrument profile .. 118
 Change the PIN for a Connect profile ... 119
Manage all instrument profiles as an administrator .. 119
 View all instrument profiles ... 119
 Reset the PIN for a profile ... 119
 Add a profile .. 120
 Enable or disable administrator privileges .. 120
 Delete a profile .. 121

CHAPTER 9 Use the instrument with the Security, Auditing, and E-signature (SAE) v2.0 module ... 122

 Overview of the Security, Auditing, and E-signature (SAE) v2.0 module components ... 123
 Overview of the instrument features when the SAE module is enabled 123
 Security, Auditing, and E-signature (SAE) v2.0 module functions 124
 Functions that are controlled .. 124
 Functions that can be audited .. 125
 Functions that can be signed .. 125
 Security, Auditing, and E-signature (SAE) v2.0 module roles 125
 Dialog boxes in the SAE module .. 126
 Profiles when the SAE module is enabled ... 127
 SAE-enabled system components ... 127
 Compatibility between SAE-enabled and SAE-disabled components 128
 Enable SAE functions ... 129
 Workflow: Enable SAE functions .. 129
 Configure SAE Administrator Console application profiles 129
 Enable SAE on the instrument and specify the SAE server (administrator only) . 130
 Connect to the SAE server ... 131
 Enable SAE functions in QuantStudio™ Design and Analysis Software v2 131
 Disable SAE on the instrument (administrator only) 132
 Sign in as a local administrator with SAE enabled .. 133
 Sign in with SAE enabled .. 134
 Sign out with SAE enabled ... 135
 Change your SAE account password on the instrument 136
 Sign a plate setup ... 137
 Enter an audit reason .. 138
 View signing records for a plate file .. 139
Configure maintenance and service settings .. 159
 Request technical support with Smart Help .. 159
 Request instrument service with Smart Help 160
 Perform a self-verification test .. 161
 View the last self-verification test result .. 161
 View the instrument log ... 161
 Export the instrument log .. 162
 View the instrument statistics ... 162
 Enable or disable remote monitoring .. 163
 Update the software .. 163
 Repair the software ... 164
 Back up the instrument ... 164
 Restore a backup of the instrument ... 165
 Overview of an instrument reset (restore factory default) 165
 Reset the instrument (restore factory default) 166
 Configure the instrument for the hands-free features 166
 Manage the run history .. 166
 Manage the file name convention of the data file 167
 View the notifications .. 167
 Enable and disable home screen notifications 168
 Set up email notifications ... 168
 Clear the notifications .. 169

■ APPENDIX A Instrument specifications and layout 170
 Instrument dimensions .. 170
 Instrument and computer clearances ... 171
 Configured system dimensions ... 172
 Light guidelines .. 173
 Electrical requirements .. 173
 Environmental requirements ... 174

■ APPENDIX B Connect the instrument to a network 175
 Connect the computer to the instrument directly or to a LAN 175
 Connect the instrument to a wired network 176
 Connect the instrument to a wireless network 177
 Instrument and computer connections ... 178
APPENDIX E Documentation and support .. 206

- Related documentation .. 206
- Customer and technical support ... 207
- Limited product warranty .. 207

Index .. 208
Network and password security requirements

Network configuration and security

The network configuration and security settings of your laboratory or facility (such as firewalls, anti-virus software, network passwords) are the sole responsibility of your facility administrator, IT, and security personnel. This product does not provide any network or security configuration files, utilities, or instructions.

If external or network drives are connected to the software, it is the responsibility of your IT personnel to ensure that such drives are configured and secured correctly to prevent data corruption or loss. It is the responsibility of your facility administrator, IT, and security personnel to prevent the use of any unsecured ports (such as USB, Ethernet) and ensure that the system security is maintained.

Password security

Thermo Fisher Scientific strongly recommends that you maintain unique passwords for all accounts in use on this product. All passwords should be reset upon first sign in to the product. Change passwords according to your organization’s password policy.

It is the sole responsibility of your IT personnel to develop and enforce secure use of passwords.
Instrument hardware description

Overview of the instrument

The Applied Biosystems™ QuantStudio™ 6 Pro and 7 Pro Real-Time PCR Systems use fluorescent-based polymerase chain reaction (PCR) reagents to perform the following functions:

- Quantitative detection of target nucleic acid sequences (targets)
- Qualitative detection of targets (endpoint analysis)
- Qualitative analysis of the PCR product (post-PCR target nucleic acid sequences melt curve analysis)
- Protein thermal shift experiments

Each instrument is available with an interchangeable block. The following blocks are available:

- 96-well 0.2-mL block
- 96-well 0.1-mL block
- 384-well block

The instrument can be used directly from the touchscreen to create and start runs. To design runs or to analyze data, the instrument can be integrated with the desktop software or the Connect platform.

Each instrument has the following features:

- Sign-in with facial authentication
- An interchangeable block
- Microphone for voice activation
- Speakers for feedback from voice activation and for instructional videos
• Smart Help to request technical support or instrument service directly from the instrument
• Barcode scanner for tracking plates

Features of each instrument

<table>
<thead>
<tr>
<th>Feature</th>
<th>QuantStudio™ 6 Pro System</th>
<th>QuantStudio™ 7 Pro System</th>
</tr>
</thead>
<tbody>
<tr>
<td>VeriFlex™ Zones[2]</td>
<td>Three VeriFlex™ Zones</td>
<td>Six VeriFlex™ Zones</td>
</tr>
<tr>
<td>Security, Auditing, and E-signature (SAE) v2.0 module</td>
<td>—</td>
<td>Available[3]</td>
</tr>
</tbody>
</table>

[3] See Chapter 9, “Use the instrument with the Security, Auditing, and E-signature (SAE) v2.0 module”.

Instrument filters and supported dyes

System dyes

The QuantStudio™ 6 Pro Real-Time PCR System has a coupled five-color filter set.

The QuantStudio™ 7 Pro Real-Time PCR System has a decoupled six-by-six color filter set.

For more information about available spectral dye calibration kits, contact Support.

<table>
<thead>
<tr>
<th>Peak filter</th>
<th>Color</th>
<th>Filter wavelength (nm)[1]</th>
<th>System dyes</th>
<th>Example custom dyes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Excitation</td>
<td>Emission</td>
<td>FAM™ dye, SYBR GREEN™ dye</td>
</tr>
<tr>
<td>x1-m1</td>
<td>Blue</td>
<td>470 ± 15</td>
<td>520 ± 15</td>
<td>JOE™ dye, HEX™ dye, TET™ dye[2]</td>
</tr>
<tr>
<td>x2-m2</td>
<td>Green</td>
<td>520 ± 10</td>
<td>558 ± 11</td>
<td>VIC™ dye</td>
</tr>
<tr>
<td>x3-m3</td>
<td>Yellow</td>
<td>550 ± 11</td>
<td>586 ± 10</td>
<td>NED™ dye, TAMRA™ dye, ABY™ dye</td>
</tr>
<tr>
<td>x4-m4</td>
<td>Orange</td>
<td>580 ± 10</td>
<td>623 ± 14</td>
<td>ROX™ dye, JUN™ dye</td>
</tr>
</tbody>
</table>
Custom dyes

The instrument can run assays designed with custom dyes. Custom dyes include the following options:

- Dyes that are not supplied by Thermo Fisher Scientific.
- Dyes or formulations of dyes that are not system dyes for the instrument.

To use a custom dye on the instrument, review the following requirements.

- Calibrate the instrument for the custom dye (see “Calibrate custom dyes” on page 98).
- Ensure that the custom dye excites between 455–672 nm and emits between 505–723 nm.
- Select a custom dye that does not overlap with other dyes used in the run (see “System dyes” on page 15).
- The custom dye for use in calibration must be attached to the 5’ end of a short DNA oligonucleotide consisting of the first two bases of the probe sequence without a quencher at the 3’ end.
Overview of data collection

The instrument collects raw fluorescence data at different points during the PCR cycle, depending on the type of run performed.

When you create a plate file, you can customize the optical filter channels through which the instrument collects data. You can specify a filter channel set for all PCR thermal protocols and for melt curve stages.

<table>
<thead>
<tr>
<th>Run type</th>
<th>Run type</th>
<th>Data collection point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time</td>
<td>• Standard curve</td>
<td>During the thermal cycling protocol. Typical timing is to collect data at each cycle of a PCR stage or continuously during a melt stage.</td>
</tr>
<tr>
<td></td>
<td>• Relative standard curve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Comparative C\textsubscript{T} (\Delta\textsubscript{C}\textsubscript{T})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Melt curve</td>
<td></td>
</tr>
<tr>
<td>Post-PCR (endpoint)</td>
<td>• Genotyping</td>
<td>• After thermal cycling is completed. For Presence/Absence and Genotyping analysis, data collection before the PCR cycle is optional, but recommended.</td>
</tr>
<tr>
<td></td>
<td>• Presence/absence</td>
<td>• (Optional) During the thermal cycling protocol. Collecting data during the run can confirm genotyping results by viewing traces in allelic discrimination plots or viewing genotyping calls at earlier cycles.</td>
</tr>
</tbody>
</table>

VeriFlex™ Zones

VeriFlex™ Zones provide independent temperature zones that offer enhanced functionality and precise control over your real-time PCR runs.

The independent zones are ideal for real-time PCR optimization. They also provide the ability to perform multiple runs at the same time. Unlike standard gradients which give a sigmoidal temperature curve across the columns, blocks with VeriFlex™ Zones help deliver accurate temperatures across every zone.

The QuantStudio™ 6 Pro System has three VeriFlex™ Zones (Figure 1). The QuantStudio™ 7 Pro System has six VeriFlex™ Zones (Figure 2).

Note: VeriFlex™ Zones are only applicable for the 96-well 0.2-mL block and the 96-well 0.1-mL block.
Note: Plate files are not compatible between the QuantStudio™ 6 Pro System and the QuantStudio™ 7 Pro System. For more information, see “Compatibility of plate files” on page 28.

AutoDelta settings

AutoDelta enables an incremental increase or decrease in the temperature or time in a PCR cycle.

To use AutoDelta, specify a difference in the time and the temperature. Specify the PCR cycle for this change to be applied.
Parts of the instrument

Figure 3 Front of the instrument

1. Cameras
2. Touchscreen
3. Microphones
4. USB port
5. Indicator light
6. Proximity sensor
7. Access door for block change
8. Speakers
9. Drawer
Figure 4 Back of the instrument

1. USB ports
2. Wi-Fi dongle port
3. Ethernet port
4. RS-232 port (service use only)
5. ON/OFF switch
6. Power inlet receptacle

Note: The instrument recognizes only one external storage device at a time for data transfer.

The USB ports at the rear of the instrument can be used for external devices, for example, a mouse or a keyboard.
Instrument status indicator

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Instrument status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Powered off</td>
</tr>
<tr>
<td></td>
<td>Sleep mode</td>
</tr>
<tr>
<td>Blue light changing brightness slowly</td>
<td>Powering on</td>
</tr>
<tr>
<td>Blue light changing brightness</td>
<td>Standby</td>
</tr>
<tr>
<td>Blue light moving inwards towards middle of</td>
<td>Drawer opening</td>
</tr>
<tr>
<td>instrument</td>
<td></td>
</tr>
<tr>
<td>Blue light moving outwards towards side of</td>
<td>Drawer closing</td>
</tr>
<tr>
<td>instrument</td>
<td></td>
</tr>
<tr>
<td>Blue light moving back and forth</td>
<td>Block is being changed</td>
</tr>
<tr>
<td>Blue light on</td>
<td>Instrument is ready to start a run or is</td>
</tr>
<tr>
<td></td>
<td>performing a run</td>
</tr>
<tr>
<td>Amber blinking</td>
<td>Error</td>
</tr>
</tbody>
</table>

Hands-free features

Facial authentication

The instrument allows hands-free facial authentication to sign in a user. The instrument camera detects a face. The instrument will sign in the user after the face is matched to the photo associated with a profile.

Voice activation

The instrument recognizes a set of commands for hands-free operation. For list of supported commands, see “Use voice commands” on page 44.

Voice commands are only available when a user is signed in with a Connect account. Voice commands are not available with a local instrument profile.

Voice commands are only available in select countries.

Voice commands use Amazon™ Alexa™ for Business.
Indicators for the hands-free features

Indicators for facial authentication

<table>
<thead>
<tr>
<th>Display</th>
<th>Status of facial authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Sign In screen displays 🧵.</td>
<td>Facial authentication for the instrument is enabled.</td>
</tr>
</tbody>
</table>
| The Sign In screen does not display 🧵. | • Facial authentication for the instrument is disabled.
• All users must sign in with a PIN.
Note: To enable facial authentication, see “Configure the instrument for the hands-free features” on page 166. |

Indicators for voice commands

For the location of the proximity sensor, see Figure 3 on page 19.

<table>
<thead>
<tr>
<th>Display</th>
<th>Status of voice commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>🗣️ (Gray)</td>
<td>The voice command function is not available because the proximity sensor does not detect a person.</td>
</tr>
</tbody>
</table>
| 🗣️ (Gray) | The voice command function is not available.
• Voice activation for the instrument is disabled by an administrator.
• The user is signed in with a local profile.
• The voice command function has been disabled by the user and the proximity sensor does not detect a person. The icon will return to a red state when the proximity sensor detects a person. |
| 🗣️ (Amber) | The instrument is preparing to accept voice commands.
Note: The amber display is an intermediate state and will only appear for several seconds. |
| 🗣️ (Blue) | The voice command function is available.
• Voice activation for the instrument is enabled by an administrator.
• The user is signed in with a Connect instrument profile.
• The proximity sensor detects a person. |
| 🗣️ (Red) | The voice command function is not available. It has been disabled by the user (see “Enable or disable the microphone” on page 44). |

To enable voice commands, see “Configure the instrument for the hands-free features” on page 166.
For more information about linking a local instrument profile to a Connect profile, see “Link the instrument to your Connect account” on page 111 and “If you link when you are signed in to the instrument” on page 115.

Software description

Parts of the home screen

Figure 5 Home screen

1. Instrument name
2. Instrument calendar
3. Microphone
4. Help
5. Eject
6. Status dial
7. Block installed
8. Current user
9. Connectivity icons
10. Buttons to access plate files
11. Instrument settings
Table 1 Parts of the home screen

<table>
<thead>
<tr>
<th>Element of the home screen</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument name</td>
<td>Set by the administrator to identify the instrument.</td>
</tr>
<tr>
<td>Calendar</td>
<td>Schedule time for a run or see runs that are scheduled.</td>
</tr>
<tr>
<td>Microphone</td>
<td>Shows the status of the microphone (see “Indicators for voice commands” on page 22 and “Enable or disable the microphone” on page 44).</td>
</tr>
<tr>
<td>Help</td>
<td>Access the Help.</td>
</tr>
<tr>
<td>Eject</td>
<td>Open or close the drawer to insert or remove a plate.</td>
</tr>
</tbody>
</table>
| Status dial | • When the instrument is not in use—Displays Set up run.
 | • When the instrument is in use—Displays the sample block temperature, the elapsed run time, and the run status.
 | • When the instrument is locked while in use—Displays Locked within the status dial.
 | • When a run is complete—Displays Run complete. |
| Block type | The block that is installed on the instrument.
 | If applicable, the following items are noted:
 | • If there is no block and heated cover set installed.
 | • If the block and heated cover are mismatched. |
| Current user | Displays the current signed-in user.
 | Guest is displayed if no user is signed in. |
| Connectivity | Only the icons that apply to the connectivity status of the instrument at the time are displayed.
 | • —The instrument is wirelessly connected.
 | • —The instrument is connected to a wired network.
 | • —A USB drive is plugged into the instrument.
 | • —The instrument is connected to a network drive.
 | • —The instrument is connected to a Connect account. |
| Buttons to access plate files | Access a plate file to edit it or start a run.
 | • Set up run—Open a system template or a saved plate file.
 | • (Load plate file)—Open a system template or a saved plate file.
 | • (Run last)—Open the last plate file that was used to start a run. The last plate file is specific to the profile. |
Table 1 Parts of the home screen (continued)

<table>
<thead>
<tr>
<th>Element of the home screen</th>
<th>Function</th>
</tr>
</thead>
</table>
| Instrument settings | • Edit the file name convention.
| | • View the run history, and transfer or delete data files.
| | • Install, change, or remove the block and the heated cover.
| | • Configure the instrument settings.
| | • Configure the maintenance and service settings.
| | • View notifications.
| | • Configure hands-free operation.

Connect and Cloud definitions

The terms Connect, Cloud, Thermo Fisher Connect, and Thermo Fisher Cloud are used interchangeably on the instrument touchscreen. The term Connect is used in this document.

The following icons are used interchangeably on the instrument touchscreen:

- 🌐
- 🌐

The 🌐 icon is used in this document.

Instrument, desktop software, and Connect platform features

The instrument and the software include the features described below.

Note: System templates cannot be edited. They can be edited, then saved as a separate plate file.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Instrument</th>
<th>Desktop</th>
<th>Connect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use as guest (no sign in)</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Schedule a run</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Open system templates</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Open system templates, edit them, and save them as plate files</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Open plate files created on the desktop software</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Open plate files created on the Connect platform</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Open plate file created on the instrument</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Overview of file locations and files

File locations

<table>
<thead>
<tr>
<th>File location</th>
<th>Description and function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run queue</td>
<td>Plate files sent from the desktop software.</td>
</tr>
</tbody>
</table>
| Public | • Plate files saved by guest users are stored in this folder.
 | • Data files from runs started by guest users are stored in this folder. |
| Templates | • System templates are stored in this folder.
 | • System templates cannot be edited. They must be saved as a separate plate file and stored in a different folder.
 | • Data files cannot be saved in this folder. |
| Connect | • Plate files can be retrieved from a Connect profile.
 | • Data files can be saved to a Connect profile.
 | • You must have a Connect profile. |
File location

<table>
<thead>
<tr>
<th>File location</th>
<th>Description and function</th>
</tr>
</thead>
</table>
| Network drive | • Plate files can be retrieved from a network drive.
 • Data files can be saved to a network drive.
 • The instrument must be connected to a network or a computer. |
| USB drive | • Plate files can be retrieved from a USB drive.
 • Data files can be saved to a USB drive.
 • A USB drive must be inserted into the instrument. |
| My instrument | • This location is only available to a user who is signed in. Guest users cannot access this location to retrieve plate files or save data files.
 • This location is specific to a user. Files are not accessible to any other users, except for administrators.
 • Plate files can be retrieved from this location.
 • Data files are always saved to this location. |
| Post-read | • In endpoint PCR, the pre-read data is saved in this folder for post-read analysis. |

Files

IMPORTANT! Plate files and data files are not included in a back-up of the instrument and are not restored when a backup of the instrument is restored.

Plate files and data files must be transferred separately. See Chapter 6, “View and manage files”.

System templates are included in the back-up and are restored when a backup of the instrument is restored.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description and function</th>
<th>Supported in</th>
</tr>
</thead>
</table>
| System template | • A non-editable template.
 • Accessed from ⇹ (Load plate file) and the Templates folder (only system templates are stored in this folder).
 • Accessed from the Set up run button.
 • Is saved as a separate plate file if it is edited.
 • Contains the thermal protocol for the real-time PCR.
 • Does not contain the sample information.
 • Does not contain the target information.
 • Sample information and target information must be added (saved as a separate plate file). The sample information and target information can be added on the desktop software or on the Connect platform after the run is complete. | Instrument Desktop Connect |
<table>
<thead>
<tr>
<th>Item</th>
<th>Description and function</th>
<th>Supported in</th>
</tr>
</thead>
</table>
| Plate File | • A file that has been saved from a system template.
| From 🔄 (Load plate file) | • Can be edited and saved.
| | • Can be edited and saved as a separate plate file.
| | • Contains the thermal protocol for the real-time PCR.
| | • Can contain the sample information.
| | • Can contain the target information.
| | • Sample information and target information must be added if not present. The sample information and target information can be added on the desktop software or on the Connect platform after the run is complete. | Instrument
| | | Desktop
| | | Connect |
| Plate File | • The plate file associated with the last run for the profile.
| From 🔄 (Run last) | • Can be edited and saved.
| | • Can be edited and saved as a separate plate file.
| | • Contains the thermal protocol for the real-time PCR.
| | • Contains the sample information. The sample information can be edited on the desktop software or on the Connect platform after the run is complete.
| | • Contains the target information. The target information can be edited on the desktop software or on the Connect platform after the run is complete.
| | • Sample information and target information can be edited on the instrument.
| | • If the sample information and the target information for the last run were added on the desktop software or on Connect after the run was complete, they will not be included on the plate file that is on the instrument. | Instrument |
| Data file | • Contains the real-time PCR data.
| | • Can be viewed on the instrument only immediately after the run is complete.
| | • Transfer to Connect or to the desktop software to view and analyze data. | Instrument (limited)
| | | Desktop
| | | Connect |

Compatibility of plate files

The plate files are specific to the instrument.

A plate file for a QuantStudio™ 6 Pro System can only be opened on this instrument. It cannot be opened on a QuantStudio™ 7 Pro System.

A plate file for a QuantStudio™ 7 Pro System can only be opened on this instrument. It cannot be opened on a QuantStudio™ 6 Pro System.
Components of the files

<table>
<thead>
<tr>
<th>Component</th>
<th>Instrument</th>
<th>Desktop</th>
<th>Connect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Data file name</td>
<td></td>
<td>Experiment file name</td>
</tr>
<tr>
<td></td>
<td>Reagent information</td>
<td></td>
<td>Plate barcode</td>
</tr>
<tr>
<td></td>
<td>- Name</td>
<td></td>
<td>User name</td>
</tr>
<tr>
<td></td>
<td>- Type</td>
<td></td>
<td>Instrument type</td>
</tr>
<tr>
<td></td>
<td>- Lot number</td>
<td></td>
<td>Block type</td>
</tr>
<tr>
<td></td>
<td>- Barcode</td>
<td></td>
<td>Analysis module</td>
</tr>
<tr>
<td></td>
<td>- Catalog number</td>
<td></td>
<td>Chemistry (reagent information)</td>
</tr>
<tr>
<td></td>
<td>- Expiry date</td>
<td></td>
<td>Run mode</td>
</tr>
<tr>
<td></td>
<td>- Plate barcode</td>
<td></td>
<td>Comments</td>
</tr>
<tr>
<td></td>
<td>- Location to send data after the</td>
<td></td>
<td>(Connect platform only) Notifications</td>
</tr>
<tr>
<td></td>
<td>run is complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Thermal cycling conditions</td>
<td>Thermal cycling conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Cover temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reaction volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Data collection points</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ramp rates</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- VeriFlex™ Zones</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Auto Delta settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plate</td>
<td>Sample names</td>
<td>Define and assign samples, targets or SNP assays, and tasks in the Plate setup screen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Targets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNP assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td>Monitor a run in progress</td>
<td>Monitor a run in progress (link to Connect Instrument Details)</td>
<td>Monitor a run in progress</td>
</tr>
<tr>
<td></td>
<td>View time remaining, temperature,</td>
<td>View time remaining</td>
<td>View time remaining, temperature, method, and amplification plots</td>
</tr>
<tr>
<td></td>
<td>method, and amplification plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pause, resume, or stop a run</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td>Not applicable</td>
<td>Review plots</td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td>Export results</td>
<td>Export results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data files are transferred to the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>desktop software or the Connect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>platform for analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Third-party software

Before installing third-party software on the computer running the desktop software, confirm that the third-party software will not do the following:

- Restrict Ethernet communication.
- Interfere with instrument or computer operation.

Network connection options

You can connect an instrument to a network or computer in the configurations listed below. For more information, see Appendix B, “Connect the instrument to a network”.

<table>
<thead>
<tr>
<th>Direct connection</th>
<th>Local area network (LAN) connection</th>
<th>Connect platform connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>wired</td>
<td>wired or wireless</td>
<td>wired or wireless</td>
</tr>
</tbody>
</table>

Types of runs

Standard curve run

A standard curve run determines the absolute target quantity in samples.

1. The software measures amplification of the target in a standard dilution series and in test samples.
2. The software generates a standard curve using data from the standard dilution series.
3. The software uses the standard curve to interpolate the absolute quantity of target in the test samples.
Relative standard curve run

A relative standard curve run determines the relative target quantity in samples.

1. The software measures amplification of the target of interest and of an endogenous control target in a standard dilution series, in a reference (calibrator) sample, and in test samples.

 The endogenous control is a target that is expressed equally in all samples; examples of endogenous controls are β-actin, GAPDH, and 18S ribosomal RNA. The software can algorithmically incorporate multiple endogenous control targets in relative quantification calculations.

 The reference sample is used as the basis for relative quantification results (or 1× sample). For example, in a study of drug effects on gene expression, an untreated control is an appropriate reference sample.

2. The software generates standard curves for the target of interest and the endogenous control using data from the corresponding standard dilution series.

3. The software uses the standard curves to interpolate the quantities of the target of interest and the endogenous control in each sample. The target quantity in each sample is then normalized to the sample’s endogenous control quantity.

4. To determine the relative quantity of the target in test samples, the software divides the normalized target quantity in the sample by the normalized target quantity in the reference sample.

Comparative C\(_i\) (ΔΔC\(_i\)) run

A comparative C\(_i\) (ΔΔC\(_i\)) run determines the relative target quantity in samples.

1. The software measures amplification of the target of interest and of an endogenous control target in a reference (calibrator) sample and in test samples.

 The endogenous control is a target that is expressed equally in all samples; examples of endogenous controls are β-actin, GAPDH, and 18S ribosomal RNA. The software can algorithmically incorporate multiple endogenous control targets in relative quantification calculations.

 The reference sample is used as the basis for relative quantification results (or 1× sample). For example, in a study of drug effects on gene expression, an untreated control is an appropriate reference sample.

2. The measurements for the target of interest are normalized to the endogenous control.

3. To determine the relative quantity of the target in test samples, the software compares the normalized ΔC\(_q\) (ΔC\(_i\) or ΔC\(_r\)) for the sample to the normalized ΔC\(_q\) (ΔC\(_i\) or ΔC\(_r\)) for the reference sample.
Genotyping run

A genotyping run detects the single nucleotide polymorphism (SNP) variants of a target nucleic acid sequence.

Genotyping experiments use preformulated TaqMan™ SNP Genotyping Assays that include the following components:

- Two sequence-specific primers for amplification of sequences containing the SNP of interest
- Two allele-specific TaqMan™ probes for Allele 1 and Allele 2

1. The software normalizes the fluorescence of the reporter dyes to the fluorescence of the passive reference dye in each well.
2. The software plots the normalized reporter dye signal of each sample well on an Allelic Discrimination Plot, which contrasts the reporter dye intensities of the allele-specific probes.
3. The software algorithmically clusters the sample data, and assigns a genotype call to the samples of each cluster according to its position on the plot.

Presence/absence run

Presence/absence run determines the presence or absence of a target nucleic acid sequence in a sample.

The software calls the target present or absent based on an algorithmically determined call threshold. (The call threshold is different from the C_t threshold; the C_t threshold is not used to make calls.)

Melt curve run

Melt curve runs determine the melting temperature (T_m) of the amplification products of a PCR that used intercalating dyes.

In the software, melt curve analysis is included in the default run method for any experiment type that uses intercalating dyes.

1. The software plots a melt curve based on the fluorescence of the dye with respect to change in temperature.
2. Using the melt curve, the software calculates the melting temperature (T_m).
System template file names

The first part of the file name varies, based on the instrument (QuantStudio™ 6 Pro System or QuantStudio™ 7 Pro System).

The instrument will display the system templates applicable to the block that is installed.

System template file names for the 96-well 0.2-mL block

<table>
<thead>
<tr>
<th>System template name</th>
<th>Run type</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS7Pro-96-Well-0-2ml_GT_Fast.edt</td>
<td>• Genotyping run</td>
</tr>
<tr>
<td></td>
<td>• 96-well, 0.2-mL Standard plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-96-Well-0-2ml_GT_Std.edt</td>
<td>• Genotyping run</td>
</tr>
<tr>
<td></td>
<td>• 96-well, 0.2-mL Standard plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
<tr>
<td>QS7Pro-96-Well-0-2ml_Melt_Fast.edt</td>
<td>• Melt curve run (no PCR stage)</td>
</tr>
<tr>
<td></td>
<td>• 96-well, 0.2-mL Standard plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-96-Well-0-2ml_Melt_Std.edt</td>
<td>• Melt curve run (no PCR stage)</td>
</tr>
<tr>
<td></td>
<td>• 96-well, 0.2-mL Standard plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
<tr>
<td>QS7Pro-96-Well-0-2ml_PA_Fast.edt</td>
<td>• Presence/absence run</td>
</tr>
<tr>
<td></td>
<td>• 96-well, 0.2-mL Standard plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-96-Well-0-2ml_PA_Std.edt</td>
<td>• Presence/absence run</td>
</tr>
<tr>
<td></td>
<td>• 96-well, 0.2-mL Standard plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
<tr>
<td>QS7Pro-96-Well-0-2ml_PCM_Melt_Fast.edt</td>
<td>• Melt curve run (with PCR stage)</td>
</tr>
<tr>
<td></td>
<td>• 96-well, 0.2-mL Standard plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-96-Well-0-2ml_PCM_Melt_Std.edt</td>
<td>• Melt curve run (with PCR stage)</td>
</tr>
<tr>
<td></td>
<td>• 96-well, 0.2-mL Standard plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
</tbody>
</table>
System template file names for the 96-well 0.2-mL block

<table>
<thead>
<tr>
<th>System template name</th>
<th>Run type</th>
</tr>
</thead>
</table>
| QS7Pro-96-Well-0-2ml_RQ_Fast.edt | • Comparative C_T run
• 96-well, 0.2-mL Standard plate
• Fast cycling mode |
| QS7Pro-96-Well-0-2ml_RQ_Std.edt | • Comparative C_T run
• 96-well, 0.2-mL Standard plate
• Standard cycling mode |
| QS7Pro-96-Well-0-2ml_RSC_Fast.edt | • Relative standard curve run
• 96-well, 0.2-mL Standard plate
• Fast cycling mode |
| QS7Pro-96-Well-0-2ml_RSC_Std.edt | • Relative standard curve run
• 96-well, 0.2-mL Standard plate
• Standard cycling mode |
| QS7Pro-96-Well-0-2ml_SC_Fast.edt | • Standard curve run
• 96-well, 0.2-mL Standard plate
• Fast cycling mode |
| QS7Pro-96-Well-0-2ml_SC_Std.edt | • Standard curve run
• 96-well, 0.2-mL Standard plate
• Standard cycling mode |

System template file names for the 96-well 0.1-mL block

<table>
<thead>
<tr>
<th>System template name</th>
<th>Run type</th>
</tr>
</thead>
</table>
| QS7Pro-96-Well-0-1ml_GT_Fast.edt | • Genotyping run
• 96-well, 0.1-mL Standard plate
• Fast cycling mode |
| QS7Pro-96-Well-0-1ml_GT_Std.edt | • Genotyping run
• 96-well, 0.1-mL Standard plate
• Standard cycling mode |
| QS7Pro-96-Well-0-1ml_Melt_Fast.edt | • Melt curve run (no PCR stage)
• 96-well, 0.1-mL Standard plate
• Fast cycling mode |
<table>
<thead>
<tr>
<th>System template name</th>
<th>Run type</th>
</tr>
</thead>
</table>
| QS7Pro-96-Well-0-1ml_Melt_Std.edt | • Melt curve run (no PCR stage)
 • 96-well, 0.1-mL Standard plate
 • Standard cycling mode |
| QS7Pro-96-Well-0-1ml_PA_Fast.edt | • Presence/absence run
 • 96-well, 0.1-mL Standard plate
 • Fast cycling mode |
| QS7Pro-96-Well-0-1ml_PA_Std.edt | • Presence/absence run
 • 96-well, 0.1-mL Standard plate
 • Standard cycling mode |
| QS7Pro-96-Well-0-1ml_PCR_Melt_Fast.edt | • Melt curve run (with PCR stage)
 • 96-well, 0.1-mL Standard plate
 • Fast cycling mode |
| QS7Pro-96-Well-0-1ml_PCR_Melt_Std.edt | • Melt curve run (with PCR stage)
 • 96-well, 0.1-mL Standard plate
 • Standard cycling mode |
| QS7Pro-96-Well-0-1ml_RQ_Fast.edt | • Comparative C_T run
 • 96-well, 0.1-mL Standard plate
 • Fast cycling mode |
| QS7Pro-96-Well-0-1ml_RQ_Std.edt | • Comparative C_T run
 • 96-well, 0.1-mL Standard plate
 • Standard cycling mode |
| QS7Pro-96-Well-0-1ml_RSC_Fast.edt | • Relative standard curve run
 • 96-well, 0.1-mL Standard plate
 • Fast cycling mode |
| QS7Pro-96-Well-0-1ml_RSC_Std.edt | • Relative standard curve run
 • 96-well, 0.1-mL Standard plate
 • Standard cycling mode |
| QS7Pro-96-Well-0-1ml_SC_Fast.edt | • Standard curve run
 • 96-well, 0.1-mL Standard plate
 • Fast cycling mode |
| QS7Pro-96-Well-0-1ml_SC_Std.edt | • Standard curve run
 • 96-well, 0.1-mL Standard plate
 • Standard cycling mode |
System template file names for the 384-well block

<table>
<thead>
<tr>
<th>System template name</th>
<th>Run type</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS7Pro-384-Well-GT-Fast.edt</td>
<td>• Genotyping run</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-GT-Std.edt</td>
<td>• Genotyping run</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-Melt-Fast.edt</td>
<td>• Melt curve run (no PCR stage)</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-Melt-Std.edt</td>
<td>• Melt curve run (no PCR stage)</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-PA-Fast.edt</td>
<td>• Presence/absence run</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-PA-Std.edt</td>
<td>• Presence/absence run</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-PCR-Melt-Fast.edt</td>
<td>• Melt curve run (with PCR stage)</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-PCR-Melt-Std.edt</td>
<td>• Melt curve run (with PCR stage)</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-RQ-Fast.edt</td>
<td>• Comparative (C_t) run</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-RQ-Std.edt</td>
<td>• Comparative (C_t) run</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
<tr>
<td>System template name</td>
<td>Run type</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>QS7Pro-384-Well-RSC-Fast.edt</td>
<td>• Relative standard curve run</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-RSC-Std.edt</td>
<td>• Relative standard curve run</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-SC-Fast.edt</td>
<td>• Standard curve run</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Fast cycling mode</td>
</tr>
<tr>
<td>QS7Pro-384-Well-SC-Std.edt</td>
<td>• Standard curve run</td>
</tr>
<tr>
<td></td>
<td>• 384-well plate</td>
</tr>
<tr>
<td></td>
<td>• Standard cycling mode</td>
</tr>
</tbody>
</table>
Workflow

Sign in to your instrument profile or your Connect account
(PIN or facial authentication)
▼

Open a plate file
(System template or saved plate file)
▼

(Optional) Edit the plate file
▼

Load the plate into the instrument
▼

Start the run
▼

Unload the plate from the instrument
▼

(Optional) Transfer the data file

(A location to transfer the data file might have been selected before the run. The data file only needs to be transferred manually after the run in order to transfer to a new location.)
Get started

■ Precautions for use ... 39
■ Installation and instrument verification 40
■ Overview of guest access ... 40
■ Power on the instrument .. 42
■ Sign in .. 43
■ Enable or disable the microphone 44
■ Use voice commands .. 44
■ Sign out .. 45

Precautions for use

CAUTION! PHYSICAL INJURY HAZARD. Do not remove the instrument cover. There are no components inside the instrument that you can safely service yourself. If you suspect a problem, contact technical support.

CAUTION! FIRE HAZARD. For continued protection against the risk of fire, replace fuses only with listed and certified fuses of the same type and rating as those currently in the instrument.

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the sample block temperature can reach 100°C. Allow it to cool to room temperature before handling.

CAUTION! Before using a cleaning or decontamination method other than those recommended by Thermo Fisher Scientific, confirm with Thermo Fisher Scientific that the proposed method will not damage the instrument.

CAUTION! Use flat caps for tubes. Rounded caps can damage the heated cover.
Installation and instrument verification

The instrument is installed by a representative from Thermo Fisher Scientific. The following tasks will be performed during the installation process:

• Unpack the instrument and the computer
• Install the instrument and the computer
• Install QuantStudio™ Design and Analysis Software v2 on the computer
• Perform calibrations and RNase P verification

There is a recommended order to create instrument profiles and link Connect accounts to the instrument (see “Recommended order to set up profiles” on page 108).

Overview of guest access

The instrument can be used without signing in. The following limits are in place if you do not sign in to the instrument:

• All actions are recorded to the guest profile.
• You have access only to the public folder for selecting and storing experiments.
• You cannot transfer data files to Connect.
• Data files can only be transferred to a USB drive or a network drive.

The instrument can be configured so that guest access is not permitted (see “Require sign-in” on page 107).
Use the instrument as a guest

If the **Guest** button is not visible on the **Sign In** screen, guest access has been disabled. An administrator must enable guest access (see “Require sign-in” on page 107).

1. Guest button

In the **Sign-In** screen, tap **Guest**.
Power on the instrument

If left unattended, the instrument automatically enters sleep mode to conserve power. The default time that an instrument is inactive before going into sleep mode is 15 minutes.

1. Tap anywhere on the touchscreen to determine if the instrument is in sleep mode.
 If the screen becomes active, the instrument is already powered on.

2. If the home screen does not display, power on the instrument by pressing the ON/OFF switch on the rear panel.

![Figure 6 Location of the ON/OFF switch]

ON/OFF switch

Note: The length of time that the instrument is inactive before going into sleep mode can be customized (see “Enable and edit sleep mode” on page 150).
Sign in

Sign in with a PIN

Create an instrument profile before signing into the instrument (see “Create a new local instrument profile” on page 112 and “Link the instrument to your Connect account” on page 111).

1. In the Sign In screen, tap the PIN field, then enter your PIN.
 If your instrument profile is not the default that is displayed, tap \(\checkmark\), then select your instrument profile.

2. Enter your PIN, then tap Enter.

You are signed in and the home screen is displayed.

See “Parts of the home screen” on page 23.

Sign in with facial authentication

For information on indicators for facial authentication, see “Indicators for facial authentication” on page 22.

For lighting guidelines, see “Light guidelines” on page 173.

Create an instrument profile before signing into the instrument (see “Create a new local instrument profile” on page 112 or “Link the instrument to your Connect account” on page 111). The instrument profile must be set up with facial authentication (see “Add facial authentication to an existing instrument profile” on page 118).

The instrument must accept facial authentication (see “Configure the instrument for the hands-free features” on page 166).

The instrument must have the sign-in screen displayed. Sign out the current user to return to the sign-in screen (see “Sign out” on page 45).

1. Stand in front of the instrument.
 Center yourself in front of the instrument. The ideal position is approximately 27 inches (69 cm) from the camera.

 Note: You do not need to position yourself as closely to the instrument to sign in as when you took the photos to set up facial authentication.

2. Wait while the instrument searches for a match with the photos associated with profiles.

3. *(Optional)* Reposition yourself if the instrument indicates that the face is out of position.
 Ensure that you are centered in front of the instrument. Move away from the instrument and towards the instrument to find the correct position.
Enable or disable the microphone

The microphone can be disabled if the voice command function is available. A blue microphone icon indicates that the voice command function is available.

The microphone cannot be manually disabled if the voice command function is already not available. A gray microphone icon indicates that the voice command function is unavailable.

For a description of the indicators, see “Indicators for voice commands” on page 22.

Tap (Microphone).

The microphone icon will change to red with a bar to indicate that it is disabled (③).

If the proximity sensor does not detect a person, the microphone icon will change to gray with a bar (③). It will change back to red with a bar when the proximity sensor detects a person.

Use voice commands

The instrument must accept voice commands (see “Configure the instrument for the hands-free features” on page 166).

A Connect profile must be used. For information about linking a local instrument profile to a Connect profile, see “Link a local profile to a Connect profile” on page 113.

Voice commands are not available when the instrument is used as a guest. Voice commands are not available with a local instrument profile.

The instrument must display a screen where a voice command is supported.

For information on indicators for voice commands, see “Indicators for voice commands” on page 22.

Say “Alexa™, open pro instrument”, wait for the instrument audio prompt and, then issue the voice command.

The instrument audio prompt depends on the voice command that was issued.

<table>
<thead>
<tr>
<th>Voice command</th>
<th>Instrument audio output</th>
<th>Instrument action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>—</td>
<td>The home screen is displayed.</td>
</tr>
<tr>
<td>Open door</td>
<td>—</td>
<td>Instrument drawer opens.</td>
</tr>
<tr>
<td>Shut door</td>
<td>—</td>
<td>Instrument drawer closes.</td>
</tr>
<tr>
<td>Begin Run</td>
<td>"Are you sure you want to start the run? Yes or no."</td>
<td>If yes, the instrument starts the run. If no, the Plate properties screen is displayed.</td>
</tr>
</tbody>
</table>
Voice command | Instrument audio output | Instrument action
---|---|---
End run | "Are you sure you want to stop the run? Yes or no." | If yes, the instrument stops the run and displays the Plate properties screen. If no, the run continues.
Lock screen | — | The instrument locks the screen. The status dial displays Locked.
Change Block\[1\] | — | If the instrument has a block installed, the Change Block screen is displayed. If there is no block in the instrument, the Install Block screen is displayed.
Instrument scheduler\[1\] | — | The instrument schedule is displayed.
Help | — | The help topic associated with the current page on the screen is displayed.
Smart support\[1\] | — | The Smart Help screen is displayed.
Calibrations | — | The Calibration screen is displayed.

\[1\] Unsaved changes are discarded after the instrument action is completed.

Sign out

1. In the home screen, tap \(\text{Profile}\).
2. Tap **Sign out**, then tap **Yes** to confirm.

You are signed out and the **Sign In** screen is displayed.
Create and run plates on the instrument

Options to run a plate

Create and run a plate from a system template or a saved plate file

A system template is a plate file that is pre-loaded on the instrument and not editable. It can be edited and saved as a new custom plate file.

Plate files can be edited in Connect or the desktop software.

The Run Queue folder contains plate files sent to the instrument from the desktop software.

1. In the home screen, tap one of the following options:
 -
 - (Load plate file)
 - Set up run

2. Tap the location of the system template or the plate file in the left column.

 -
 - Run Queue
 - Public
 - My Instrument

 Note: My Instrument is not available if you are using the instrument as a guest. You must be signed in.

 - Templates
 - Connect

 Note: You must be signed in with a Connect profile.

 - Network Drive
 - USB
3. Tap the template file name in the right column. The Plate Properties screen is displayed.

4. *(Optional)* In the Plate Properties screen, edit the Data file name. The default file name is the template name appended with the date and time. To edit the default file name, see “Manage the file name convention of the data file” on page 167.

5. *(Optional)* Use the barcode scanner. See “(Optional) Scan a barcode using a barcode scanner” on page 50.

6. Tap the location to send the data file.
 - Connect
 Note: You must be signed in with a Connect profile.
 - USB Device
 - Network Drive
 - This Instrument
 Note: This option is not available if you are using the instrument as a guest. You must be signed in.

 The connection status of each location is displayed.

 If the connection between the instrument and the location that was selected to save the data file is interrupted, the instrument completes the run. The data file is saved on the instrument. The data file must be transferred to another location manually (see “Transfer data files at a later time” on page 76).

7. *(Optional)* Select the Export run results with checkbox. For more information about this setting, see “Overview of customized data export” on page 49. To import a different export setting, see “Import an auto export setting” on page 53.

8. *(Optional)* Edit the run method (see page 55).

9. *(Optional)* Edit the plate (see page 62).

10. Load a plate into the instrument (see page 50).

11. Tap Start run, then confirm that a plate was loaded. The confirmation page can be disabled.

 The status dial is displayed. The status dial contains the following information:
 - The block temperature
 - The elapsed time of the run
 - The status of the run
Repeat the last run

The last run is associated with the profile. It is not the last run for the instrument.

1. In the home screen, tap 🔄 (Run last).
 The Plate Properties screen is displayed.

2. *(Optional)* In the Plate Properties screen, edit the Data file name.
 The default file name is the template name appended with the current date and time.
 To edit the default file name, see “Manage the file name convention of the data file” on page 167.

3. *(Optional)* Use the barcode scanner.
 See “*(Optional)* Scan a barcode using a barcode scanner” on page 50.

4. Tap the location to send the data.
 - 🔄 Connect
 Note: You must be signed in with a Connect profile.
 - 🖥 USB Device
 - 📁 Network Drive
 - 🟫 This Instrument
 Note: This option is not available if you are using the instrument as a guest.
 You must be signed in.

 The connection status of each location is displayed.
If the connection between the instrument and the location that was selected to save the data file is interrupted, the instrument completes the run. The data file is saved on the instrument. The data file must be transferred to another location manually (see “Transfer data files at a later time” on page 76).

5. *(Optional)* Select the **Export run results with** checkbox.

 For more information about this setting, see “Overview of customized data export” on page 49.

 To import a different export setting, see “Import an auto export setting” on page 53.

6. *(Optional)* Edit the run method (see page 55).

7. *(Optional)* Edit the plate (see page 62).

8. Load a plate into the instrument (see page 50).

9. Tap **Start run**, then confirm that a plate was loaded.

 The confirmation page can be disabled.

The status dial is displayed. The status dial contains the following information:

- The block temperature
- The elapsed time of the run
- The status of the run

See Figure 7 on page 48.

For options during a run, see Chapter 5, “Options for a run”.

Overview of customized data export

The instrument can perform the primary analysis and the secondary analysis of the data, then export the results.

The instrument has a default export setting.

The export settings can be customized. The instrument will perform the primary and secondary analysis according to the export setting file.

The export settings are customized in the QuantStudio™ Design and Analysis Software v2, then transferred to the instrument. The export settings are in a JSON file format.

The export settings cannot be created or edited on the instrument.
(Optional) Scan a barcode using a barcode scanner

The instrument is compatible with an optional Handheld Barcode Scanner (Cat. No. 4488442, purchased separately). The barcode scanner reads Code 128 (alphanumeric), which supports 128 ASCII character barcodes.

For safety information, see “Laser safety” on page 197.

1. Tap the **Barcode** field.

2. Hold the scanner 20–30 cm away from a plate or container label and aim at the center of the barcode, then press the trigger.

3. Slowly move the scanning beam across the barcode until the scanner emits a high-pitched tone.

When the scanner scans a barcode, it automatically transmits the following information:

- Transmits the alphanumeric equivalent of the barcode to the **Barcode** field.
- Transmits other reagent information.

For more information about the hand-held barcode scanner, see the user documentation provided with the barcode scanner.

Load a plate into the instrument

IMPORTANT! The instrument should be used by trained operators who have been warned of the moving parts hazard.

CAUTION! Use flat caps for 0.2-mL tubes and 0.1-mL tubes. Rounded caps can damage the heated cover.

1. Tap ② (Eject) to open the drawer.

2. Load the plate onto the block.
 - Well A1 of the plate is in the top-left corner of the block.
 - If the plate has a barcode, the barcode faces the front of the instrument.

3. Tap ② (Eject) to close the drawer.
Unload a plate from the instrument

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the plate temperature can reach 100°C. Allow it to cool to room temperature before handling.

The status dial displays Run complete when the run is finished. If the automatic sign-out feature is enabled and the set time has elapsed, the instrument will display the Sign In screen.

1. Tap (Eject) to open the instrument drawer, then remove the plate.

2. Tap (Eject) to close the instrument drawer.

For information on plate disposal, see “Chemical safety” on page 203 and “Biological hazard safety” on page 205.
Edit a plate before starting a run

- Overview of a template file with restricted editing 52
- Options to edit the properties of a plate file ... 53
- Options to edit the method of a plate file .. 54
- Options to edit the well details of a plate file ... 60

Overview of a template file with restricted editing

A template file can be set up with restricted editing in the QuantStudio™ Design and Analysis Software v2. If a template file is set up with restricted editing, only certain parts of the template file can be edited. The parts of the template file that cannot be edited are defined by the user in QuantStudio™ Design and Analysis Software v2.

A user cannot set up the restricted editing properties on the instrument.

If a template file has restricted editing, it is noted in the following locations:

- The top of the screen
- Under the Data file properties heading
- In the Data file name field

![Diagram](image_url)

1. The top of the screen
2. Under the Data file properties heading
3. In the Data file name field
Options to edit the properties of a plate file

The following files can be edited:

- A system template (see “Create and run a plate from a system template or a saved plate file” on page 46)
 A system template that is edited must be saved as a plate file. A system template cannot be overwritten.
- A saved plate file (see “Create and run a plate from a system template or a saved plate file” on page 46)
- The plate file associated with the last run (see “Repeat the last run” on page 48)

The following items can be edited in the Properties tab:

- Import the sample setup (see page 53)

Import a sample setup

This feature allows you to import a sample setup file. A sample setup file shows the position of each sample on the plate. The sample setup file is a TXT file or a CSV file.

1. In the Properties tab, tap Actions, then tap Import sample setup.
2. In the Import Sample Setup screen, tap the appropriate folder, then tap the appropriate file.

Import an auto export setting

The export settings can be customized. For more information about the export settings, see “Overview of customized data export” on page 49.

The export settings file is in a JSON file format.

The export settings must be customized in the QuantStudio™ Design and Analysis Software v2, then they are imported onto the instrument.

1. In the Properties tab, tap the Export run results with field.
 The Auto Export Settings screen is displayed.
2. Tap Import.
3. Tap the location of the file in the left pane, then tap the file in the right pane.

Delete an auto export setting

1. In the Properties tab, tap the Export run results with field.
 The Auto Export Settings screen is displayed.
2. Tap Delete.
Options to edit the method of a plate file

The following files can be edited:

- A system template (see “Create and run a plate from a system template or a saved plate file” on page 46)
 A system template that is edited must be saved as a plate file. A system template cannot be overwritten.
- A saved plate file (see “Create and run a plate from a system template or a saved plate file” on page 46)
- The plate file associated with the last run (see “Repeat the last run” on page 48)

The following items can be edited in the Methods tab:

- Time and temperature for each PCR step (see page 55)
- Cover temperature and volume (see page 55)
- Number of cycles (see page 55)
- Steps (see page 56)
- Stages (see page 56)
- Data collection points (see page 56)
- VeriFlex™ Zones (see page 57)
- Auto Delta (see page 58)
- Ramp rates (see page 59)
- Pauses (see page 59)
Method elements

1. Method tab
2. Heated cover temperature
3. Reaction volume
4. Stage of thermal protocol
5. Step within a stage
6. Number of cycles for the stage
7. Temperature for the step
8. Hold time for the step
9. Data collection point

Edit the method

1. In the Method tab, tap Edit.

2. Tap a field, then enter the changes.
 - Cover temperature
 - Volume
 - Temperature for any steps
 - Time for any steps
 - Number of PCR cycles

3. Tap Save.

4. Enter a name for the plate file, then tap Done.

5. In the Save Template screen, select a storage location for the plate file, then tap Done.
 A confirmation is displayed.

6. Tap Close.
Add or remove steps

Add a PCR step or remove a PCR step.

1. In the Method tab, tap Edit ➔ Advanced ➔ Manage steps.

 Note: Use ⤪ or ⤫ to navigate through the method if it is not all displayed.

2. Tap Add step, then tap ➔ (Add) in the location of the step to be added.

3. Enter the temperature and time, then tap Enter.

4. Tap Remove step, then tap ➔ (Remove) in the appropriate step.

5. Tap Done.

The Method tab is displayed with the updated method.

Add or remove stages

Add a PCR stage or remove a PCR stage.

1. In the Method tab, tap Edit ➔ Advanced ➔ Manage stages.

 Note: Use ⤪ or ⤫ to navigate through the method if it is not all displayed.

2. Tap Add Stage, then tap ➔ (Add) in the location of the stage to be added.

3. Tap the type of stage.

 • Hold
 • Pre-Read
 • Post-Read
 • Infinite
 • PCR
 • Melt Curve

 The new stage is added. The time and temperature must be edited as part of the method (see “Edit the method” on page 55).

4. Tap Remove stage, then tap ➔ (Remove).

5. Tap Done.

Add or remove data collection locations

1. In the Method tab, tap Edit ➔ Advanced ➔ Data collection location.

 Note: Use ⤪ or ⤫ to navigate through the method if it is not all displayed.
2. Tap (Data collection location) to designate a step as a data collection location or to remove data collection from the step. The (Data collection location) button functions as an on-off switch.

![Diagram showing data collection on and off]

1. Data collection is off
2. Data collection is on

3. Tap Done.

Set up or remove VeriFlex™ Zones

VeriFlex™ Zones are only available for 96-well blocks.

• The QuantStudio™ 6 Pro System has three VeriFlex™ Zones.
• The QuantStudio™ 7 Pro System has six VeriFlex™ Zones.

Note: For more information about compatibility of plate files with VeriFlex™ Zones between the two instruments, see “VeriFlex™ Zones” on page 17.

1. In the Method tab, tap Edit ➔ Advanced ➔ VeriFlex™ Zones / Auto Delta.

 Note: Use ‹ or › to navigate through the method if it is not all displayed.

 Note: The PCR stage provides the option of VeriFlex™ Zones or the Auto Delta feature. Ensure that the VeriFlex™ Zones option is selected.

![Diagram showing VeriFlex™ Zones and Auto Delta settings]

1. VeriFlex™ Zones is selected
2. Tap the temperature field in the appropriate VeriFlex™ Zone.

3. Enter a temperature, then tap Enter.
 The temperatures in adjacent zones must have a difference of ≤5°C.

4. Tap Done.
 A stage with VeriFlex™ Zones is denoted with a icon.

5. In the Method tab, tap Remove Done to remove the VeriFlex™ Zones.
 Note: The VeriFlex™ Zones setting is removed from the Method tab.

Set up or remove the Auto Delta feature

Note: The Auto Delta feature is only available in the PCR stage.

1. In the Method tab, tap Edit Advanced VeriFlex™ Zones / Auto Delta.
 Note: Use or to navigate through the method if it is not all displayed.

2. Tap (Edit) in one of the PCR stages.

3. Tap Auto Delta settings.
 See Figure 8 on page 57.

4. Enter the starting cycle to apply Auto Delta settings.

5. Set the Delta temperature slider to the position or the position, then enter the numerical value for the difference in the temperature.

6. Set the Delta time slider to the position or the position, then enter the numerical value for the difference in the time.

7. Tap Done.
 A PCR step with an Auto Delta setting applied to it is denoted with an .
8. In the **Method** tab, tap 4 Remove 4 Done to remove the Auto Delta setting.

Note: The Auto Delta setting is removed from the **Method** tab.

Configure ramp rates

The ramp rate is how quickly the temperature changes from one stage or step to another stage or step. The maximum ramp rate for the instrument is 6.5°C/second.

1. In the **Method** tab, tap **Edit** 4 **Advanced** 4 **Ramp rates**.

 Note: Use 4 or 3 to navigate through the method if it is not all displayed.

2. Tap a ramp rate, then edit the value.

3. Tap **Done**.

Add or remove a pause

A pause allows you to open the drawer to add additional reagents to the plate.

1. In the **Method** tab, tap **Edit** 4 **Advanced** 4 **Add pause**.

 Note: Use 4 or 3 to navigate through the method if it is not all displayed.

2. Tap 4 (Pause).

3. Enter a temperature and the cycle.

 A pause in the thermal cycling protocol is denoted with a 4. The cycle of the pause and the temperature of the pause are also denoted.

4. Tap 4 (Pause) to remove the pause.

5. Tap **Done**.
Options to edit the well details of a plate file

The following files can be edited:

- A system template (see page 46)
 A system template that is edited must be saved as a plate file. A system template cannot be overwritten.
- A saved plate file (see “Create and run a plate from a system template or a saved plate file” on page 46)
- The plate file associated with the last run (see “Repeat the last run” on page 48)

The following items can be edited in the Plate tab:

- Sample name and sample type (see page 62)
- Target name, reporter dye, and quencher dye (see page 62)
- Reagents (see page 63)
- Passive reference dye (see page 64)
- Import an assay information file (AIF; see page 64)

A plate layout file for preplated assays will already be populated with the target name, reporter dye, and quencher dye.

Options to view a plate layout

The following views are available for a plate layout:

- Plate view
 - Shows each well on the plate
 - Tap to provide information about the sample name, sample type, target name, reporter dye, or quencher dye
 - An individual well
 - Multiple wells (tap each individual well)
 - A row (tap the letter)
 - A column (tap the number)
 - Tap (Select all) to select all of the wells in the plate
- Well table view
 - Shows the well ID, the sample, the target, the reporter, the quencher, the type, and the reagents

The plate view and the well table view can show the sample color or the target color with the Color By dropdown list.
View a 384-well plate

The **Plate** tab displays a 384-well plate if the 384-well block is installed. The plate can be edited in the 384-well view. You can zoom in to a 96-well section of the 384-well plate in order to edit the plate.
1. In the region of the 384-well plate that you want to zoom in on, pinch outwards with two fingers.

2. (Optional) To change the region that you are zoomed in on, use two fingers to drag the plate in the appropriate direction.
 The 384-well plate can zoom in on any 96-well section. It is not limited to specific 96-well quadrants.
 If you selected a full row or column in the 96-well view, only the set of wells that was visible in the 96-well view is selected. The full row or column of the 384-well plate is not selected.

3. To return to the full 384-well view from the 96-well section, pinch inwards with two fingers.

Assign or edit a well

A target or an assay must be defined (see “Add a target or an assay” on page 62).
A sample setup file can be imported instead of assigning or editing a well manually (see “Import a sample setup” on page 53).

1. In the Plate tab, tap a well or multiple wells.

2. Tap the Sample Information pane, then tap Samples.
 Note: If no wells are selected, the pane is labeled Legend.

3. Enter a sample name.

4. Select a sample type from the dropdown list.

5. Tap Target/SNP, then select Target or Assay from the dropdown list.

6. Tap a row in the table, then tap Done.

Add a target or an assay

1. In the Plate tab, tap a well or multiple wells.

2. Tap the Sample Information pane, then tap Target/SNP.

3. Tap a row in the table, then tap Add New.

4. Enter the target, then select the reporter dye and the quencher dye from the respective dropdown lists.

5. Tap Add Target, then tap Close.

Assign the target or the assay to a well (see “Assign or edit a well” on page 62).
Add or edit the reagent details

1. In the **Plate** tab, tap one of the following items.
 - A single well
 - Multiple wells
 - [] (Select all)

2. Tap the **Sample Information** pane, then tap **Reagents**.
 Note: If no wells are selected, the pane is labeled **Legend**.

3. Tap a row in the table, then enter the information.
 - Reagent name
 - Reagent type
 - Lot number
 - SKU (Part number)
 - Expiration date

4. Tap **Save reagent**.

5. Tap **Done**.

Apply the reagents to a plate

Add the reagents before they are applied to a plate (see “Add or edit the reagent details” on page 63).

1. In the **Plate** tab, tap one of the following items.
 - A single well
 - Multiple wells
 - [] (Select all)

2. Tap the **Sample Information** pane, then tap **Reagents**.
 Note: If no wells are selected, the pane is labeled **Legend**.

3. Tap a row in the table to apply it to the plate.

4. Tap **Done**.

Delete the reagent details

1. In the **Plate** tab, tap one of the following items.
 - A single well
 - Multiple wells
 - [] (Select all)

2. Tap the **Sample Information** pane, then tap **Reagents**.
 Note: If no wells are selected, the pane is labeled **Legend**.
3. *(Optional)* Tap **Clear all.**

4. Tap a row in the table, then delete the information in each field.
 - Reagent name
 - Reagent type
 - Lot number
 - SKU (Part number)
 - Expiration date
 - Quencher dye

5. Tap **Save reagent.**

6. Tap **Done.**

Edit a passive reference dye

A passive reference dye normalizes the fluorescent reporter signal in real-time PCR.

1. In the **Plate** tab, tap **Actions** ➤ **Edit passive reference dye.**
 The **Passive Reference Dye** screen is displayed.

2. Select the passive reference dye.

The passive reference dye is displayed under the plate diagram.

Import an Assay Information File (AIF)

The Assay Information File is provided in TXT format and/or XML and HTML format, depending on the product line and order date. The HTML format is a reference for users. The XML or the TXT format is imported.

For a detailed description of the AIF, see *Understanding Your Shipment* (Pub. No. MAN0017153)

1. In the **Plate** tab, tap **Actions** ➤ **Import AIF file.**

2. In the **Import AIF file** screen, tap the appropriate folder, then tap the appropriate file.
Options for a run

- Screens available during a run .. 65
- Edit a plate file during a run .. 66
- Pause an instrument run ... 67
- Stop an instrument run ... 67
- View the method during a run ... 68
- View real-time data and plots during a run 68
- View the time remaining during a run ... 69
- Lock the touchscreen during a run ... 69
- Unlock the touchscreen during a run .. 70
- Instrument Schedule ... 70

Screens available during a run

From the home screen, you can swipe or tap the arrows to navigate to different screens. The following screens are available:

- A screen displaying the method (swipe left once or tap the right arrow (►) once)
- The real-time amplification plot (swipe left twice or tap the arrow right (►) twice)
- The time remaining in the run (swipe left three times or tap the right arrow (►) three times)
Edit a plate file during a run

The targets and samples can be added or edited after a run has started. The method cannot be edited after a run has started.

1. In the home screen during a run, tap (Actions).
 See Figure 9 on page 66.

2. Tap Set up.

3. In the Plate tab, tap a well or multiple wells.
 Note: Use the plate view to edit or assign a well (see “Options to view a plate layout” on page 60).

4. Tap the Sample Information pane, then tap Samples.
 Note: If no wells are selected, the pane is labeled Legend.

5. Enter a sample name, then select a sample type from the dropdown list.
 • Unknown
 • Standard
 • No template control (NTC)

6. Tap Target/SNP, then select Target or Assay from the dropdown list.

7. Tap a row in the table, then tap Close › Done.
Pause an instrument run

Pause a run to add reagents to the plate or to edit the number of cycles.

1. In the home screen during a run, tap \(\text{Actions} \).

 See Figure 9 on page 66.

2. Tap **Pause run**, then enter a pause temperature.

3. **(Optional)** Tap **Edit** to change the number of cycles.

4. **(Optional)** Tap \(\text{Eject} \) to open the drawer, then tap \(\text{Eject} \) to close the drawer.

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the plate temperature can reach 100°C. If you want to access the plate during a run pause, enter room temperature as the pause temperature and allow the plate to cool to room temperature before handling.

Stop an instrument run

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the plate temperature can reach 100°C. If you want to access the plate during a run pause, enter room temperature as the pause temperature and allow the plate to cool to room temperature before handling.

1. In the home screen during a run, tap \(\text{Actions} \).

 See Figure 9 on page 66.

2. Tap **Stop run**.

3. Unload the plate (see “Unload a plate from the instrument” on page 51).
View the method during a run

1. In the home screen during a run, swipe left once or tap the right arrow (➡️) once.

 Start time
 Method, including the current stage
 End time
 Time remaining

2. Swipe right once or tap the left arrow (⬅️) once to return to the home screen.

View real-time data and plots during a run

1. In the home screen during a run, swipe left twice or tap the right arrow (➡️) twice.
2. *(Optional)* Tap the dropdown list then select the view for the plot.
 - Linear
 - Log 10

3. *(Optional)* Tap **Actions ➔ Analyze amp plots**.

4. *(Optional)* Tap **Actions ➔ View well details** to see the amplification for a specific well.

5. Swipe right twice or tap the left arrow (_left arrow_) twice to return to the home screen.

Adjust the display of real-time plots during a run

1. In the real-time amplification plot, tap **(Zoom)** or pinch.
2. Tap the arrows to pan left or right, or swipe left or right within the amplification plot.

View the time remaining during a run

1. In the home screen during a run, swipe left three times or tap the right arrow (_Right Arrow_) three times.
 The time remaining in the run is displayed.
2. Swipe right three times or tap the left arrow (_left arrow_) three times to return to the home screen.

Lock the touchscreen during a run

After you have started a run, you can lock the touchscreen so that other users cannot interfere with instrument operation.

Note: You must be signed in.

1. In the home screen during a run, tap **(Profile)**.
2. Tap **Lock screen ➔ Lock**.
 The status dial displays **Locked**.

The touchscreen automatically unlocks when the run is complete.

The touchscreen can be unlocked during the run (see “Unlock the touchscreen during a run” on page 70).
Unlock the touchscreen during a run

The touchscreen can be unlocked by the user who locked it or an administrator. The touchscreen automatically unlocks when the run is complete.

1. Tap anywhere on the touchscreen.
2. Tap the PIN Code field, then enter your PIN.
 The status dial is displayed without Locked.

Instrument Schedule

Overview of the instrument schedule

The instrument schedule allows a user to reserve the instrument at a particular date and time.

A Connect profile is required.

The instrument is not locked to prevent any other users at the time.

Schedule a run

1. In the home screen, tap (Calendar).
2. Select a view.
 • Day
 • Week
 • Month
3. Tap a time.
 The day on the calendar can be selected in the month view.
 The day view and the week view show the schedule in 30-minute increments.
4. Edit the start date, end date, start time, and end time.
5. (Optional) Add notes.
6. Tap Save, then tap Done to exit the schedule.
Cancel a scheduled run

1. In the home screen, tap 📆 (Calendar).

2. Select a view.
 - Day
 - Week
 - Month

3. Tap the reservation.
 The Edit Reservation screen is displayed.

4. Tap Cancel Reservation, then tap Yes.
Manage plate files

Copy plate files

1. In the home screen, tap Load plate file or Set up run.

2. Tap the appropriate folder.
 - Run Queue
 - Public
 - Connect
 - Network Drive
 - USB

3. Tap Manage.

4. Tap the file, then tap Copy files.
 Multiple files can be selected.

5. Select the destination folder.
 - Public
 - Connect
 - Network Drive
 - USB

6. Tap Paste.

Tap (Back) to return to the home screen.
Delete plate files

System templates cannot be deleted. A plate file that was saved from a system template can be deleted.

For descriptions of files, see “Files” on page 27.

1. In the home screen, tap Load plate file or Set up run.

2. Tap the appropriate folder.
 - Run Queue
 - Public
 - Connect
 - Network Drive
 - USB

3. Tap Manage.

4. Tap the file, then tap Delete files.
 Multiple files can be selected.

5. Tap Yes to confirm.

Tap (Back) to return to the home screen.

Manage data files

View QC Check status after a run

The status dial displays Run complete when a run is complete. After Done is tapped, the amplification plot can no longer be viewed on the instrument.

1. In the home screen after a run is complete, see the status of the QC Check.
 The status of the QC Check is displayed under the status dial.
Figure 10 QC Check passed

1. QC Check

Figure 11 Review required for QC Check

1. QC Check

2. See the QC data in the QuantStudio™ Design and Analysis Software v2 or the QuantStudio™ Design and Analysis v2.
View an amplification plot after a run

The status dial displays **Run complete** when a run is complete. The amplification plot can only be viewed immediately after a run. After **Done** is tapped, the amplification plot can no longer be viewed on the instrument.

If the automatic sign-out feature is enabled and the set time has elapsed, the instrument will display the **Sign In** screen. The amplification plot cannot be viewed on the instrument after the run.

1. In the home screen after a run is complete, tap **Details**. The amplification plot is displayed. The display can be adjusted (see “Adjust the display of real-time plots during a run” on page 69).
2. *(Optional)* On the **Details** screen, tap the **Plot Types** dropdown list, then select a plot type.
 - **Rn vs. Cycle**
 - **dRn vs. Cycle**
3. *(Optional)* On the **Details** screen, tap the **Y-Scales** dropdown list, then select the view for the plot.
 - **Linear**
 - **Log 10**
4. *(Optional)* Tap **Well details**, then tap **Samples** or **Targets**.
5. Select an amplification plot preview, then tap **View amp plot**.
6. *(Optional)* Tap a specific well on the right side of the amplification plot to see the details for the single well.
7. Tap **Close** to return to the home screen.
Transfer a data file immediately after a run

This section describes the transfer of a data file immediately after a run. To transfer a data file or a set of data files at a later time, see “Transfer data files at a later time” on page 76.

In the home screen, the status dial displays **Run complete** when a run is complete. The home screen also shows the location that the data file was transferred to. The location for transfer was selected before the run was started (see “Create and run a plate from a system template or a saved plate file” on page 46 and “Repeat the last run” on page 48).

If the automatic sign-out feature is enabled and the set time has elapsed, the instrument will display the **Sign In** screen. Data files cannot be transferred from the home screen. They can be transferred at a later time (see “Transfer data files at a later time” on page 76).

Data files will be transferred to the location that was selected before the run was started, even if the user was automatically signed out.

1. In the home screen after a run is complete, tap **Transfer file**.

2. Select the destination for the data file.
 - 🌐 Public
 - 🌐 Connect

 Note: You must be signed in with a Connect profile.
 - 📁 Network Drive
 - 🌐 USB
 - 🌐 My Instrument

 Note: This option is not available if you are using the instrument as a guest. You must be signed in.

3. Tap **OK**, then tap **Transfer**.

Transfer data files at a later time

This section describes the transfer of a data file or a set of data files at any time. To transfer a data file immediately after a run, see “Transfer a data file immediately after a run” on page 76.

- Guests can only transfer guest data files.
- A user that is signed in can transfer their own data files.
- Administrators can transfer all data files.
1. Tap ☰ (Settings) › Run history.
 The Run History screen is displayed. It contains a list of the runs performed on the instrument associated with the profile. Administrators can view all of the runs performed.

2. (Optional) Tap the table header to sort by that parameter.
 - Run name
 - Date
 - Transferred
 - User (Administrator only)

3. Tap the data files to be transferred or tap Select all.
 Multiple data files can be selected.

4. Tap Transfer, then tap the storage location.

5. Tap Done.

View the list of data files on the instrument

- Guests can only view the list of guest data files.
- A user that is signed in can view the list of their own data files.
- Administrators can view all data files.

1. In the home screen, tap ☰ (Settings) › Run history.
 The Run History screen is displayed.

2. Tap an individual run record, then tap View.
 The following details are displayed:
 - The file name
 - The run status
 - The user name
 - The start time and the end time
 - The duration of the run
 - The reaction volume
 - The cover temperature

3. (Optional) Tap Transfer to transfer the data file.

4. (Optional) Tap Delete to delete the data file from the instrument.

5. Tap Cancel to return to the Run History screen.

Delete data files from the instrument

- Guests cannot delete any data files.
- A user that is signed in can delete their own data files.
- Administrators can delete all the data files.
1. In the home screen, tap (Settings) ➤ Run history.
 The Run History screen is displayed. It contains a list of the runs performed on the instrument associated with the profile. Administrators can view all of the runs performed.

2. (Optional) Tap the table header to sort by that parameter.
 - Run name
 - Date
 - Transferred
 - User (Administrator only)

3. Tap the data files to be deleted or tap Select all.
 Multiple data files can be selected.

4. Tap Delete, then tap Yes to confirm.
Instrument and block calibration

The QuantStudio™ 6 Pro System and the QuantStudio™ 7 Pro System have interchangeable blocks. The calibration status applies to the combination of the instrument and the block.

If a block is moved to an instrument that it has not been calibrated on, that combination of block and instrument needs to be calibrated. This applies even if the block has previously been calibrated on a different instrument.

If a block is moved back to an instrument that is has previously been calibrated on, it does not need to be calibrated again. It needs to be calibrated again if the calibration is expired.

A run can still be started if a calibration of the block on the instrument is expired. A run cannot be started if a block has never been calibrated on the instrument.
Calibration and verification schedule

The instrument and block will be calibrated during the installation. To ensure optimal performance, perform calibrations at the recommended frequency.

Note: After instrument calibration, we recommend performing instrument verification using the provided RNase P plate.

IMPORTANT! Perform calibrations and instrument runs under the specified environmental conditions (see “Environmental requirements” on page 174). Exposure to extreme temperatures can adversely affect the instrument performance and shorten the life span of the instrument components.

To set calibration frequencies and reminders, see one of the following sections:

- View the calibration status on the instrument (see page 81)
- View calibration status and set reminders on the Connect platform (see page 82)

<table>
<thead>
<tr>
<th>Calibration</th>
<th>Recommended frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI/Uniformity</td>
<td>• Every two years (recommended).</td>
</tr>
<tr>
<td></td>
<td>• Always perform new Background and Dye calibrations after an ROI/Uniformity calibration.</td>
</tr>
<tr>
<td></td>
<td>You will be prompted to run a Background calibration after the ROI/Uniformity calibration is complete.</td>
</tr>
<tr>
<td></td>
<td>The ROI/Uniformity calibration and the Background calibration must pass in order to accept the results. It is recommended to transfer the files if the calibration fails in order to troubleshoot.</td>
</tr>
<tr>
<td></td>
<td>Note: Performing an ROI/Uniformity calibration invalidates all other calibrations.</td>
</tr>
<tr>
<td>Background</td>
<td>• Every month (recommended).</td>
</tr>
<tr>
<td></td>
<td>• Background calibration can also be performed, as needed:</td>
</tr>
<tr>
<td></td>
<td>– To check for contamination (depends on usage and laboratory conditions).</td>
</tr>
<tr>
<td></td>
<td>– To obtain the most accurate data for the removal of background fluorescence.</td>
</tr>
<tr>
<td></td>
<td>Note: Performing a Background calibration does not invalidate any other calibration.</td>
</tr>
<tr>
<td>Dye</td>
<td>• Every two years (recommended).</td>
</tr>
<tr>
<td></td>
<td>• During a Dye calibration, only the dyes on the given spectral calibration plate are calibrated.</td>
</tr>
<tr>
<td></td>
<td>Note: Performing a Dye calibration for a given dye plate does not invalidate any other calibration.</td>
</tr>
<tr>
<td>RNase P instrument verification</td>
<td>• After installing or moving the instrument.</td>
</tr>
<tr>
<td></td>
<td>• After performing any of the calibrations.</td>
</tr>
<tr>
<td></td>
<td>• As needed to confirm instrument performance.</td>
</tr>
</tbody>
</table>
Calibration descriptions

The combination of the instrument and the block is calibrated (see “Instrument and block calibration” on page 79).

<table>
<thead>
<tr>
<th>Calibration description and purpose</th>
<th>Pass criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI/Uniformity</td>
<td></td>
</tr>
<tr>
<td>• The software captures images for each optical filter.</td>
<td>The image for each filter distinguishes all wells of the plate.</td>
</tr>
<tr>
<td>• The software uses calibration data to map the increase in fluorescence to the plate wells during subsequent runs and to evaluate well-to-well consistency of the signals.</td>
<td>Each well in the image is distinct.</td>
</tr>
<tr>
<td>Background</td>
<td></td>
</tr>
<tr>
<td>• The software captures background images for each optical filter in the absence of sample and reagent, and it checks that the fluorescence from each well is below a fluorescence threshold.</td>
<td>The plate images for all filters are free of abnormal fluorescence.</td>
</tr>
<tr>
<td>• The software uses calibration data to remove background fluorescence during a run.</td>
<td></td>
</tr>
<tr>
<td>Dye</td>
<td></td>
</tr>
<tr>
<td>• The software extracts a spectral profile for each dye standard, then produces a set of spectral profiles plotted as fluorescence vs filter.</td>
<td>Dye spectra peak within the same filter as their group.</td>
</tr>
<tr>
<td>• The software uses calibration data to characterize and distinguish the individual contribution of each dye in the total fluorescence signals collected by the instrument.</td>
<td></td>
</tr>
</tbody>
</table>

View the calibration status and set reminders

View the calibration status on the instrument

The Status and Reminders screen also allows you to perform the following functions:

- Transfer the calibration results (see page 89)
- Transfer the calibration data files (see page 89)
- View the calibration images (see page 87)
1. In the home screen, tap (Settings) > Maintenance and service > Calibration > Status and reminders.

 The Status and Reminders screen is displayed. It shows the following information:
 - Type of calibration
 - Status of the calibration
 - Last calibration
 - Date that the calibration expires
 - If a reminder is set

2. Tap a calibration row, then tap View to view the history of that specific calibration type.

 - Date performed
 - Result of the calibration
 - Whether the calibration is current
 - Operator

3. Tap Cancel to return to the Status and Reminders screen.

Set calibration frequency and reminders on the instrument

1. In the home screen, tap (Settings) > Maintenance and service > Calibration > Status and reminders.

 The Status and Reminders screen is displayed.

2. Tap a calibration row, then tap Edit.

3. Tap on the Expiration Interval field, then enter the number of days.

 The default is 730 days (2 years).

4. Tap on the Reminder field, then enter the number of days

 The Next Reminder field will be populated.

5. Set the On/Off slider to the On position to enable a reminder about calibration.

6. Tap Save.

 The calibration reminder can be set as a home screen notification (see “Enable and disable home screen notifications” on page 168).

View calibration status and set reminders on the Connect platform

Note: The calibration reminders feature requires a connection between the instrument and a computer network.

1. Sign in to Connect on a browser.

2. Tap (Instrument) to open InstrumentConnect.

3. Select any of your registered instruments.
4. In the **Summary** tab:
 - Tap **Calibrations** to view the status of each calibration type.
 - *(Optional)* Tap **Calibration Reminders** to set the calibration reminder time table and enter the notification email address or addresses.

 Note: More than one email address can receive the calibration reminders.
 Note: The settings are automatically saved.
 - *(Optional)* In the **Downloads** section, tap **Maintenance Summary.pdf** to download the calibration status report.

5. In the **Calibrations History** tab:
 - View the history of each calibration type.
 - *(Optional)* Tap ☰ to download the calibration history report.

Export a calibration report

The calibration report is exported as a TXT file.

1. In the home screen, tap [Settings] > **Maintenance and service** > **Calibration** > **Status and reminders**.

2. Tap **Export**, then select a destination.
 - ☰ **Connect**
 - 🗃 **Network Drive**
 - ☰ **USB**

 The connectivity status of each location is displayed.

3. Tap **Done**.
Perform ROI/uniformity, background, and dye calibrations

Calibration workflow

Perform an ROI/uniformity calibration

You are automatically prompted to perform background calibration.

▼

Perform a background calibration

Perform any time that ROI/uniformity calibrations are current.

▼

Perform system dye calibrations

Perform any time that ROI/uniformity and background calibrations are current.

▼

(Optional) Perform custom dye calibrations (see “Calibrate custom dyes” on page 98)

Perform any time that ROI/uniformity and background calibrations are current.

Prepare a calibration plate

Required materials to prepare calibration plates

Note: We recommend calibrating with all Spectral Dye Calibrations Plates available for your block configuration even if you are not using all the dyes in the plates. This is recommended for optimal system performance.

Unless otherwise indicated, all materials are available through thermofisher.com. "MLS" indicates that the material is available from fisherscientific.com or another major laboratory supplier.

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration plates</td>
<td></td>
</tr>
<tr>
<td>ROI/Uniformity plate</td>
<td></td>
</tr>
<tr>
<td>Background calibration plate</td>
<td></td>
</tr>
<tr>
<td>Dye calibration plates</td>
<td></td>
</tr>
<tr>
<td>Equipment and consumables</td>
<td></td>
</tr>
<tr>
<td>Centrifuge with plate adapter; buckets cleaned before use</td>
<td>MLS</td>
</tr>
<tr>
<td>Powder-free gloves</td>
<td>MLS</td>
</tr>
<tr>
<td>Safety glasses</td>
<td>MLS</td>
</tr>
</tbody>
</table>
Thaw, vortex, and centrifuge a calibration plate

IMPORTANT! Keep calibration plates protected from light until you perform the calibration. Do not remove the plate from its packaging until you are ready to use it. Prolonged exposure to light can diminish the fluorescence of the dyes in the wells of calibration plates.

1. Remove the calibration plate from the freezer, then thaw the plate in its packaging for 30 minutes.

 IMPORTANT! Use each plate within 2 hours of thawing.

2. While wearing powder-free gloves, remove the calibration plate from its packaging. Do not remove the optical film.

 Note: Do not discard the packaging for the calibration plate. Each calibration plate can be used up to three times if the following conditions are met:
 - The plate is stored in its packing sleeve at –25°C to –15°C.
 - The plate is used within 6 months after opening.
 - The plate is used before the plate expiry date.

3. Vortex the plate for 5 seconds, then centrifuge at 750–1,000 × g for 2 minutes.

4. Confirm that the liquid in each well is at the bottom of the well and free of bubbles. If it is not, centrifuge the plate again.

 IMPORTANT! Keep the bottom of the plate clean. Fluids and other contaminants on the bottom of the plate can contaminate the sample block and cause an abnormally high background signal.
Perform calibrations

1. In the home screen tap (Settings) ➤ Maintenance and service ➤ Calibration. The Calibration screen is displayed.

2. In the Calibration screen, select a calibration type.

<table>
<thead>
<tr>
<th>Calibration type</th>
<th>Tap</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI/uniformity</td>
<td>ROI and uniformity</td>
</tr>
<tr>
<td>Background</td>
<td>Background</td>
</tr>
<tr>
<td>Dye</td>
<td>System dye</td>
</tr>
</tbody>
</table>

Note: You will be prompted to perform a background calibration after a ROI/Uniformity calibration.

3. *(System dye calibration only)* Select the calibration plate.

4. Follow the instructions on the screen to start the calibration.

5. Load the plate into the instrument.

⚠ **CAUTION!** The instrument should be used by trained operators who have been warned of the moving parts hazard.

6. Tap Start.

 When the ROI/Uniformity run is complete, you will be prompted to perform a background calibration.

 When the Background calibration is complete, the Calibration Status will display. It will indicate whether the calibration passed or failed.

7. *(For calibrations that pass)* Select an option.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>View the calibration images.</td>
</tr>
<tr>
<td>Transfer EDS</td>
<td>Transfer the calibration file to Connect, a USB drive, or a network drive.</td>
</tr>
<tr>
<td>Reject results</td>
<td>The calibration file is deleted.</td>
</tr>
<tr>
<td>Accept results</td>
<td>The calibration file is saved.</td>
</tr>
</tbody>
</table>

If the results are accepted and the calibration file is saved, previous calibration files associated with the combination of the instrument and the block will no longer be used.
8. *(For calibrations that fail)* Select an option.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>View the calibration images.</td>
</tr>
<tr>
<td>Transfer EDS</td>
<td>Transfer the calibration file to Connect, a USB drive, or a network drive</td>
</tr>
<tr>
<td></td>
<td>(recommended for troubleshooting).</td>
</tr>
<tr>
<td>Close</td>
<td>The calibration file is deleted.</td>
</tr>
</tbody>
</table>

See “Troubleshoot calibration failure” on page 89.

9. Unload the plate from the instrument.

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the plate temperature can reach 100°C. Allow it to cool to room temperature before handling.

Note: Use Smart Help if the instrument does not eject the plate (see “Request technical support with Smart Help” on page 159).

10. Return the plate to its original packaging.

Note: Do not discard the packaging for the calibration plate. Each calibration plate can be used up to three times if the following conditions are met:
- The plate is stored in its packing sleeve at –25°C to –15°C.
- The plate is used within 6 months after opening.
- The plate is used before the plate expiration date.

View the calibration images

The instrument performs the ROI, uniformity, and background calibrations in sequence. You can view the calibration images after the background calibration is complete.

1. In the home screen, tap ☰ *(Settings) › Maintenance and service › Calibration › Status and reminders.*

 The **Status and Reminders** screen is displayed.

2. Tap a calibration type in the table, then tap **View**.

3. Tap a calibration date in the table, then tap **View**.

 The following details are displayed:
Chapter 7 Calibrate and verify instrument performance

Perform ROI/uniformity, background, and dye calibrations

- Calibration name
- Result
- Date
- Whether this calibration is current
- The operator
- Reagent name, part number, lot number, and expiration date
- Comments.

4. **Tap Detail.**

<table>
<thead>
<tr>
<th>Calibration</th>
<th>Example results indicating successful calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI</td>
<td> Green circles around all wells and bright well centers.</td>
</tr>
<tr>
<td>Note:</td>
<td>Select the desired filter combination from the Filter Set dropdown list.</td>
</tr>
<tr>
<td>Uniformity</td>
<td> Signals from each well following a uniform trend.</td>
</tr>
<tr>
<td>Background</td>
<td> Few, if any, signals with abnormally high fluorescence.</td>
</tr>
<tr>
<td>Dye</td>
<td> Signals from each well following a uniform trend, and each dye peaks at the correct filter.</td>
</tr>
</tbody>
</table>

5. *(Optional)* For Uniformity, Background, and Dye calibration images, tap on an individual well on the right side to see the results for a single well.
Transfer calibration results

1. In the home screen, tap (Settings) > Maintenance and service > Calibration > Status and reminders. The Status and Reminders screen is displayed.

2. Tap a calibration type in the table.

3. Tap Export.

Transfer calibration data files

This section describes transferring calibration files if the calibration passed.

If the calibration fails, the calibration data file is not saved. The data file can only be transferred immediately after the calibration (see “Perform calibrations” on page 86).

1. In the home screen, tap (Settings) > Maintenance and service > Calibration > Status and reminders. The Status and Reminders screen is displayed.

2. Tap a calibration type in the table, then tap View.

3. Tap a calibration date in the table, then tap View.

4. Tap Transfer EDS.

Troubleshoot calibration failure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration failed</td>
<td>The plate was improperly prepared.</td>
<td>Ensure the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The correct plate was used for the calibration performed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The plate was properly thawed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The plate was properly centrifuged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The plate was properly sealed.</td>
</tr>
<tr>
<td></td>
<td>The plate is damaged or contaminated.</td>
<td>Check for damage, improper plate seal, or contamination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order a replacement plate. Use Smart Help if the replacement plate fails.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(see “Request technical support with Smart Help” on page 159).</td>
</tr>
<tr>
<td>High fluorescence signal in</td>
<td>Signals that exceed the limit of normal fluorescence may indicate fluorescent</td>
<td>See “Identify contamination” on page 90.</td>
</tr>
<tr>
<td>individual wells</td>
<td>contaminants on the plate or the sample block.</td>
<td></td>
</tr>
</tbody>
</table>
Observation Possible cause Recommended action

<table>
<thead>
<tr>
<th>Calibration failed but plate is undamaged</th>
<th>The incorrect plate was used for calibration performed.</th>
<th>Use the plate that matches the calibration performed.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The plate was improperly prepared.</td>
<td>Repeat the calibration with the plate properly prepared.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the calibration fails again, order a replacement plate. Use Smart Help if the replacement plate fails (see “Request technical support with Smart Help” on page 159).</td>
</tr>
</tbody>
</table>

Identify contamination

Signals that exceed the limit of normal fluorescence may indicate fluorescent contaminants on the calibration plate or the sample block. Common contaminants include ink residue from permanent pens, powder from disposable gloves, and dust.

1. View the calibration data and note the wells that failed the calibration.

2. Remove the plate from the instrument, rotate the plate 180°, then perform the calibration again.

3. Determine the location of the failed wells again as in step 1.

<table>
<thead>
<tr>
<th>Position of failed wells</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identical</td>
<td>The sample block is contaminated. Decontaminate the sample block (see page 146).</td>
</tr>
<tr>
<td>Reversed</td>
<td>The plate is contaminated. Discard the plate, then perform the calibration using a new calibration plate.</td>
</tr>
</tbody>
</table>

4. Use Smart Help if the calibration fails after you decontaminate the sample block and replace the plate (see “Request technical support with Smart Help” on page 159).

Create a background plate (optional)

Whenever possible, use a background plate listed in “Required materials to prepare calibration plates” on page 84. These plates contain a buffer that accurately simulates the reagents used for PCR, and, therefore, produces high-quality calibration data.

If a background plate is not available, you can create one as described below.

Required materials:

- MicroAmp™ optical 96-well reaction plate
- Optical adhesive cover or optical flat caps
- Pipettor, 200-µL (with pipette tips)
- Powder-free gloves
• Safety glasses
• Deionized water

IMPORTANT! Wear powder-free gloves while creating the background plate.

1. Remove a reaction plate from its box and place it on a clean, dry surface.
2. Aliquot 50 µL of deionized water to each well of the reaction plate.
3. Seal the plate using an optical adhesive cover or optical flat caps.
4. Use the plate for background calibration.

Perform verification using RNase P plates

Verification should be performed under the following circumstances:

• After installation and before first use of the instrument and the block
• After performing instrument and block calibrations
• As needed to confirm instrument and block performance

The instrument and block require valid ROI/uniformity, background, and dye calibrations to perform verification.

Instrument verification description

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Description</th>
<th>Pass criteria</th>
</tr>
</thead>
</table>
| Confirms the performance of the instrument. | Quantifies the number of copies of the human RNase P gene in samples with known concentrations of the corresponding DNA template. | The instrument passes performance specifications if the following inequality is true and the instrument successfully distinguishes between unknown populations A and B with a statistical confidence level of 99.7%.

\[([C_{qA} - 3\sigma_{C_{qA}}]) > ([C_{qB}) + 3\sigma_{C_{qB}}]) \]

where:

• \(C_{qA} \) = Average \(C_q \) of unknown population A
• \(\sigma_{C_{qA}} \) = Standard deviation of unknown population A
• \(C_{qB} \) = Average \(C_q \) of unknown population B
• \(\sigma_{C_{qB}} \) = Standard deviation of unknown population B |
RNase P instrument verification plate

The RNase P plate contains the reagents necessary for the detection and quantitation of genomic copies of the human RNase P gene (a single-copy gene encoding the RNase moiety of the RNase P enzyme). Each well contains the following components:

- PCR Master Mix
- RNase P primers
- A FAM™ dye-labeled probe
- A known concentration of human genomic DNA template

![Figure 12 96-well RNase P plate](image)

<table>
<thead>
<tr>
<th>Well</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unknown A (5,000)</td>
</tr>
<tr>
<td>2</td>
<td>NTC (no template control)</td>
</tr>
<tr>
<td>3</td>
<td>STD 1,250 copies</td>
</tr>
<tr>
<td>4</td>
<td>STD 2,500 copies</td>
</tr>
<tr>
<td>5</td>
<td>STD 5,000 copies</td>
</tr>
<tr>
<td>6</td>
<td>STD 10,000 copies</td>
</tr>
<tr>
<td>7</td>
<td>STD 20,000 copies</td>
</tr>
<tr>
<td>8</td>
<td>Unknown B (10,000)</td>
</tr>
</tbody>
</table>
Performance specifications pass criteria

After the run, the software calculates average copy number values and standard deviation values. The instrument passes performance specifications if the following inequality is true and the instrument successfully distinguishes between unknown populations A and B with a statistical confidence level of 99.7%.

\[
(C_{QA} - 3\sigma_{CQA}) > (C_{QB} + 3\sigma_{CQB})
\]

where:
- \(C_{QA} \) = Average \(C_q \) of unknown population A
- \(\sigma_{CQA} \) = Standard deviation of unknown population A
- \(C_{QB} \) = Average \(C_q \) of unknown population B
- \(\sigma_{CQB} \) = Standard deviation of unknown population B

The software automatically adjusts the threshold and omits a defined number of wells from the unknown populations to meet the performance specifications. To view any omitted wells, open the data file for the verification in the desktop software.

Prepare an RNase P plate

Materials required for RNase P plate preparation

- RNase P instrument verification plate
- Centrifuge with plate adapter; buckets cleaned before use
- Powder-free gloves
- Safety glasses
Thaw, vortex, and centrifuge an RNase P plate

IMPORTANT! Expose the RNase P plate to room temperature for no more than 45 minutes, inclusive of thawing and preparation time. After thawing, the RNase P plate cannot be refrozen.

1. Remove the RNase P plate from the freezer, then thaw the plate in its packaging.
 - Thaw the plate for approximately 5 minutes.
 - Use the plate within 30 minutes of thawing.

2. Confirm that the bench, vortex, and centrifuge are clean. Before use, wipe the vortex and centrifuge using a lint-free tissue.

3. While wearing powder-free gloves, remove the plate from its packaging.

4. Vortex the plate for 5 seconds, then centrifuge at 750–1,000 \(\times g \) for 2 minutes.

5. Confirm that the liquid in each well is at the bottom of the well and free of bubbles. If it is not, centrifuge the plate again.

 ![Diagram](image)

 IMPORTANT! Keep the bottom of the plate clean. Fluids and other contaminants on the bottom of the plate can contaminate the sample block and cause an abnormally high background signal.

Perform RNase P verification

1. In the home screen, tap (Settings) › Maintenance and service › RNase P verification.

2. Follow the instructions on the screen to start the verification.

3. Load the plate into the instrument.

 CAUTION! The instrument should be used by trained operators who have been warned of the moving parts hazard.

4. Tap Start.
5. When the run is complete and the screen displays **Complete**, tap **View results** to confirm the status of the run.

<table>
<thead>
<tr>
<th>Verification status</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passed</td>
<td>Instrument is ready for use.</td>
</tr>
<tr>
<td>Failed</td>
<td>See “Troubleshoot verification failure” on page 96.</td>
</tr>
</tbody>
</table>

6. In the **RNase P Verification Status** screen, tap one of the following options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept results</td>
<td>Save the results to the instrument.</td>
</tr>
<tr>
<td>Reject results</td>
<td>Deletes the RNase P verification results.</td>
</tr>
<tr>
<td>Export results</td>
<td>Exports the results.</td>
</tr>
</tbody>
</table>

7. Unload the plate from the instrument.

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the plate temperature can reach 100°C. Allow it to cool to room temperature before handling.

Note: Use Smart Help if the instrument does not eject the plate (see “Request technical support with Smart Help” on page 159).

The status of the RNase P verification is displayed on the **Status and Reminders** screen (see “View the calibration status on the instrument” on page 81).

IMPORTANT! RNase P plates can only be used one time. Do not reuse the RNase P plate.
Troubleshoot verification failure

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verification failed</td>
<td>The plate was improperly prepared.</td>
<td>Ensure the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The correct plate was used for the verification performed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The plate was properly thawed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The plate was properly centrifuged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The plate was properly sealed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open the data file for verification in the desktop software or the Connect platform to view the flags and the troubleshooting details for the failed wells.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The plate is damaged or contaminated.</td>
<td>Check for damage, improper plate seal, or contamination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Order a replacement plate. Use Smart Help if the replacement plate fails (see “Request technical support with Smart Help” on page 159).</td>
</tr>
<tr>
<td>High fluorescence signal</td>
<td>The reaction volume is not correct.</td>
<td>Ensure that reaction volumes in the plate are correct and match the volume that is entered in the Method tab.</td>
</tr>
<tr>
<td></td>
<td>Signals that exceed the limit of normal fluorescence can indicate fluorescent contaminants on the plate or on the sample block.</td>
<td>Examine the bottom of the reaction plate. If there is contamination, prepare a new plate and run the experiment again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify the location of contamination on the plate or sample block.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Obtain or prepare a background plate (see “Create a background plate (optional)” on page 90).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Follow the procedures to identify contamination (see “Identify contamination” on page 90).</td>
</tr>
<tr>
<td>Verification failed but plate is undamaged</td>
<td>The incorrect plate was used for verification.</td>
<td>Use the correct RNase P plate for verification.</td>
</tr>
<tr>
<td>Observation</td>
<td>Possible cause</td>
<td>Recommended action</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| Verification failed but plate is undamaged (continued) | The plate was improperly prepared. | Repeat the verification with a new properly prepared plate.
Note: Each RNase P plate can only be used once.
Open the data file for verification in the desktop software or the Connect platform to view the flags and troubleshooting details for failed wells.
If the verification fails again, order a replacement plate. Use Smart Help if the replacement plate fails (see “Request technical support with Smart Help” on page 159). |
Calibrate custom dyes

Overview of custom dyes

The instrument can run assays designed with custom dyes. The following items are defined as custom dyes:

- Dyes that are not manufactured by Thermo Fisher Scientific.
- Dyes or formulations of dyes that are not system dyes for the instrument.

Custom dye calibration workflow

Determine the optimal dye concentration for each custom dye. Use this concentration to prepare all subsequent dye calibration plates.

1. Dilute the custom dye
 - Prepare a custom dye dilution plate (page 99)
 - Run the dilution plate (page 100)
 - Determine the optimal dye concentration (page 100)
2. Calibrate the custom dye using the optimal concentration
 - Create a custom dye calibration plate (page 101)
 - Add a custom dye to the instrument (page 102)
 - Perform a custom dye calibration (page 102)

Use a dilution series to determine an optimal custom dye concentration

Custom dye dilution guidelines

Prepare a dilution series for each custom dye.

- Target several dye concentrations within a range of 100–2,000 nM.
- The custom dye for use in calibration must be attached to the 5’ end of a short DNA oligonucleotide consisting of the first two bases of the probe sequence without a quencher at the 3’ end.
- Choose a 2- or 3-fold difference in dilution points.
- Dispense 10–20 µL per well for 96-well plates.
- Dispense 5 µL per well for 384-well plates.
• Dilute the dye in buffer compatible with your Master Mix.
• *(Intercalating dyes only)* Add the appropriate amount of amplified PCR product to generate fluorescence.

Prepare a custom dye dilution plate

IMPORTANT! Wear powder-free gloves throughout the procedure.

1. Prepare a 2- or 3-fold dilution series of the custom dye.

2. Dispense aliquots of each dilution into the center of a reaction plate, then seal the plate.

 A full plate is not needed.

3. Vortex the plate for 5 seconds, then centrifuge at 750–1,000 × g for 2 minutes.

4. Confirm that the liquid in each well is at the bottom of the well and free of bubbles. If it is not, centrifuge the plate again.
IMPORTANT! Keep the bottom of the plate clean. Fluids and other contaminants on the bottom of the plate can contaminate the sample block and cause an abnormally high background signal.

Run the dilution plate

IMPORTANT! Do not run the dilution plate as a calibration.

1. Load the plate into the instrument.

CAUTION! The instrument should be used by trained operators who have been warned of the moving parts hazard.

2. Set up a genotyping plate file on the instrument (see “Create and run a plate from a system template or a saved plate file” on page 46).
 To use a system template for genotyping, see “System template file names” on page 33. Select a genotyping method that is compatible with the Master Mix.

3. In the Method tab, set the hold to 60°C for 2 minutes.

4. In the Plate tab, enter the dilution series information for the appropriate wells.

5. Tap Start run.

6. When the run is complete, transfer the data files for analysis (see “Transfer a data file immediately after a run” on page 76 or “Transfer data files at a later time” on page 76).

7. Unload the plate from the instrument.

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the plate temperature can reach 100°C. Allow it to cool to room temperature before handling.

Note: Use Smart Help if the instrument does not eject the plate (see “Request technical support with Smart Help” on page 159).

Determine the optimal dye concentration

Use the Connect platform or the desktop software to review the dye signal data and select the dilution to use for dye calibration.

1. In the Results tab, select Raw data plot.
 This plot displays the raw fluorescence signal of each optical filter, for individual wells.
 Note: The raw data plot cannot be viewed on the instrument touchscreen.
2. For each replicate population of dilutions, select the wells in the plate layout to view in the plot.

3. Examine the raw data to identify the wells yielding signals according to the ranges shown in the following table.

<table>
<thead>
<tr>
<th>Plate type</th>
<th>Acceptable signal range[^1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well</td>
<td>800,000 to 3,200,000</td>
</tr>
<tr>
<td>384-well</td>
<td>400,000 to 2,000,000</td>
</tr>
</tbody>
</table>

[^1] Signal range for the optical filter where the dye is brightest.

4. Examine the raw data to identify the wells yielding signals in the acceptable range for the optical filter where the dye is brightest.

5. (Optional) Export the raw data, then calculate the average fluorescence value for each concentration.

6. Select the lowest optimal dye concentration that falls within the acceptable signal range.

Calibrate the custom dye

Create a custom dye calibration plate

IMPORTANT! Wear powder-free gloves while creating the dye plate.

Create a full plate of the custom dye diluted to the optimal concentration:

1. Dilute the custom dye to the optimal concentration in buffer.
 Prepare an adequate volume, using a volume range of 10–20 µL/well for a 96-well plate.

2. Pipet the appropriate volume of the diluted custom dye to the plate wells.

3. Seal the plate.

4. Vortex the plate for 5 seconds, then centrifuge at 750–1,000 × g for 2 minutes.

5. Confirm that the liquid in each well is at the bottom of the well and free of bubbles. If it is not, centrifuge the plate again.
IMPORTANT! Keep the bottom of the plate clean. Fluids and other contaminants on the bottom of the plate can contaminate the sample block and cause an abnormally high background signal.

Add a custom dye to the instrument

1. In the home screen, tap (Settings) > Maintenance and service > Calibration > Custom dye. The Custom Dye screen is displayed.

2. Tap Add custom dye.

3. Tap the Custom Dye Name field, then enter a name.

 IMPORTANT!
 - Do not use a system dye name for a custom dye name.
 - Dye names are spacing sensitive and cannot contain special characters.

4. Select the type of dye.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporter</td>
<td>The dye works in conjunction with a quencher dye to report an increase of PCR product.</td>
</tr>
<tr>
<td>Quencher</td>
<td>The dye suppresses the fluorescence of a reporter dye until amplification of PCR product.</td>
</tr>
<tr>
<td>Both</td>
<td>The dye can be used as a reporter dye or a quencher dye.</td>
</tr>
</tbody>
</table>

5. Tap Save.

 IMPORTANT! The custom dye must also be added to the desktop software library before creating, running, or analyzing experiments that use custom dyes.

Perform a custom dye calibration

1. In the instrument home screen, tap (Settings) > Maintenance and service > Calibration > Custom dye. The Custom Dye screen is displayed.

2. Tap a custom dye.

3. Review the information, then tap Update.

4. Enter the calibration temperature.

 Note: The default calibration temperature is set to 60°C.

5. (Optional) Tap Reagents, then enter the reagent information.
6. Load the plate into the instrument, then tap **Start**.

CAUTION! The instrument should be used by trained operators who have been warned of the moving parts hazard.

Calibration complete is displayed when the run is complete.

7. Tap **View results ▶ Details**.

8. Review the plot.

Calibration results that pass show uniform signals with peaks that are aligned with the dye wavelength.

<table>
<thead>
<tr>
<th>Peak filter</th>
<th>Filter wavelength (nm)[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excitation</td>
</tr>
<tr>
<td>x1-m1</td>
<td>470 ± 15</td>
</tr>
<tr>
<td>x2-m2</td>
<td>520 ± 10</td>
</tr>
<tr>
<td>x3-m3</td>
<td>550 ± 11</td>
</tr>
<tr>
<td>x4-m4</td>
<td>580 ± 10</td>
</tr>
<tr>
<td>x5-m5</td>
<td>640 ± 10</td>
</tr>
<tr>
<td>x6-m6</td>
<td>662 ± 10</td>
</tr>
</tbody>
</table>

[1] The central wavelengths are the optimized wavelengths.

Figure 14 An example of a dye calibration plot

The peaks for your dye may align with a different filter set.
9. Select an action depending on whether the custom dye calibration passed or failed.

<table>
<thead>
<tr>
<th>Calibration status</th>
<th>Action</th>
</tr>
</thead>
</table>
| Passed | 1. Tap **Accept Results** or **Reject Results**.
Note: Accepting the results saves the calibration data to the instrument and overwrites existing data.
2. **(Optional)** Tap **Transfer to EDS** to transfer the calibration data to a USB. |
| Failed | 1. Perform the calibration again using a new custom dye plate. Create the plate using the next dye concentration greater than the optimal dye concentration (see “Determine the optimal dye concentration” on page 100).
2. For more information about calibration failures, see “Troubleshoot calibration failure” on page 89. |

10. Unload the plate from the instrument.

⚠️ **CAUTION! PHYSICAL INJURY HAZARD.** During instrument operation, the plate temperature can reach 100°C. Allow it to cool to room temperature before handling.

Note: Use Smart Help if the instrument does not eject the plate (see “Request technical support with Smart Help” on page 159).

Calibrate for a custom melt curve run

Use this calibration to prepare for high resolution melt analysis runs.

Note: A custom melt calibration calibrates a custom dye and a melt calibration at the same time.

- Ensure that all calibrations are current (see “View the calibration status on the instrument” on page 81).
- Add a custom dye (see “Add a custom dye to the instrument” on page 102).

1. In the home screen, tap 🚀 **(Settings) ➤ Maintenance and service ➤ Calibration ➤ Custom melt.**

2. Select the option for the kit that you are using.

- **PCR + Melt**
- **Melt only**
3. Select or add a dye, then select a filter set appropriate for your dye’s wavelength (see filter-wavelength table below).

Note: See your reagent kit documentation for dye name and wavelength information.

<table>
<thead>
<tr>
<th>Peak filter</th>
<th>Filter wavelength (nm)[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excitation</td>
</tr>
<tr>
<td>x1-m1</td>
<td>470 ± 15</td>
</tr>
<tr>
<td>x2-m2</td>
<td>520 ± 10</td>
</tr>
<tr>
<td>x3-m3</td>
<td>550 ± 10</td>
</tr>
<tr>
<td>x4-m4</td>
<td>580 ± 10</td>
</tr>
<tr>
<td>x5-m5</td>
<td>640 ± 10</td>
</tr>
<tr>
<td>x6-m6</td>
<td>662 ± 10</td>
</tr>
</tbody>
</table>

[1] The central wavelengths are the optimized wavelengths.

IMPORTANT! If the selected filter set does not match your reagent kit documentation, then the incorrect wavelength may be collected during a run.

4. (Optional) Tap **Reagents**, then enter the reagent information.

5. Load the plate into the instrument

6. Tap **Start**.

7. When the run is complete and the screen displays **Calibration complete**, tap **View results ▶ Details**.

8. Review the plot.

Passing calibration results show uniform signals with peaks that are aligned with the dye wavelength.

![An example dye calibration plot](image_url)

Figure 15 An example dye calibration plot

Note: The peaks for your dye may align with a different filter set.
9. Select an action depending on whether the custom dye calibration passed or failed.

<table>
<thead>
<tr>
<th>Calibration status</th>
<th>Action</th>
</tr>
</thead>
</table>
| Passed | 1. Tap **Accept Results** or **Reject Results**.
Note: Accepting the results saves the calibration data to the instrument and overwrites existing data.
2. *(Optional)* Tap **Transfer EDS** to transfer the calibration data to a USB. |
| Failed | 1. Perform the calibration again using a new custom dye plate. Create the plate using the next dye concentration greater than the optimal dye concentration (see “Determine the optimal dye concentration” on page 100).
2. For more information, see “Troubleshoot calibration failure” on page 89. |

10. Unload the plate from the instrument.

Note: You must also add the custom dye to the desktop software dye library before you create, run, or analyse experiments that use custom dyes.

Note: To perform a custom melt experiment, you can either create a Standard Curve or a Custom experiment with melt, then specify the data points per degree in the method.
Manage profiles

- Require sign-in .. 107
- Recommended order to set up profiles 108
- Overview of local instrument profiles and Connect profiles ... 108
- Connect instrument profile roles and functions 109
- Test the connection to the Connect platform 109
- Link the instrument to your Connect account 111
- Create a new local instrument profile 112
- Link a local profile to a Connect profile 113
- Unlink a Connect account .. 114
- If you link when you are signed in to the instrument 115
- If you link when you are not signed in to the instrument 116
- Manage individual instrument profiles 117
- Manage all instrument profiles as an administrator 119

Require sign-in

1. In the home screen, tap (Settings) ➤ Instrument settings ➤ Sign-in required.
 The Sign-In Required screen is displayed.

2. Set the slider.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>The instrument will allow guest users to access public folders.</td>
</tr>
<tr>
<td>On</td>
<td>The instrument will require a user to sign in.</td>
</tr>
</tbody>
</table>

3. Tap Done.
Recommended order to set up profiles

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a profile for the instrument administrator.</td>
<td>The first profile on the instrument becomes the instrument administrator. The first profile is set up during the initial install with a representative from Thermo Fisher Scientific. See “Create an administrator instrument profile during initial start-up” on page 117.</td>
</tr>
<tr>
<td>Select a Connect administrator.</td>
<td>A Connect administrator is distinct from an instrument administrator. The first Connect profile to be linked to the instrument is automatically assigned the role of a Connect administrator. It is recommended that the first Connect profile to be linked is the one that should be a Connect administrator. The roles can be updated at a later time on the Connect platform.</td>
</tr>
<tr>
<td>Each person creates a profile.</td>
<td>Create a local instrument profile. Connect-enabled features are not available. (Optional) Link a local instrument profile to a Connect profile.</td>
</tr>
<tr>
<td>Assign additional instrument administrators.</td>
<td>Any of the profiles can be assigned the role of instrument administrator. The local profile must be created first or the Connect profile must be linked first.</td>
</tr>
</tbody>
</table>

Overview of local instrument profiles and Connect profiles

- **Local instrument profile**
 - Plate files and data files are stored on the instrument.
 - Plate files and data files can be transferred to the desktop software.
 - Voice activation is not available.
 - Email notifications are not available.
 - The instrument schedule is not available.
• Smart Help is not available.
• Separate profiles are required for each instrument if multiple instruments are used.

• Connect profile
 • Plate files and data files are stored on the instrument.
 • Plate files and data files can be transferred to the Connect platform or the desktop software.
 • Voice activation is available.
 • Email notifications are available.
 • The instrument schedule is available.
 • Smart Help is available.
 • The same profile can be used for multiple instruments.

Connect instrument profile roles and functions

The first user who links their local instrument profile to their Connect account is assigned a Connect profile with administrator role.

<table>
<thead>
<tr>
<th>Instrument profile</th>
<th>Location</th>
<th>Functions allowed</th>
</tr>
</thead>
</table>
| Standard | Connect | • Create, save, open, import, and run plate files
 | | • Create and modify run settings
 | | • View and export data files |
| Administrator | Connect | All the permissions of a local administrator profile, plus the following functions performed in Connect:
 | | • See a list of all the Connect profiles that are linked to the instrument
 | | • Assign Connect administrator roles to one or more users
 | | • Remove a user from an instrument
 | | • Disconnect the instrument from Connect
 | | • Change the instrument name |

Test the connection to the Connect platform

1. In the home screen, tap (Settings) ➔ Maintenance and service ➔ Connect services.
 The Connect Services screen is displayed.
2. **Tap Test connection.**
 If the connection can be established, **You are able to connect to the Connect platform** will be displayed.

If the connection cannot be established, **Unable to connect** will be displayed.
3. Tap Close.

Link the instrument to your Connect account

This section describes using your Connect account when you use the instrument for the first time.

The first time you use your Connect account on an instrument, you will be prompted to create a four-digit numerical PIN. This PIN is to use when signing in to the instrument with your Connect account. It will apply to all other instruments when you use your Connect account. This does not change the password when signing in to your Connect account on a browser.

After the PIN is set up on the instrument, it must be changed with your Connect account on a browser (see “Change the PIN for a Connect profile” on page 119).

The first time the instrument is used with a Connect account, a region must be selected.

For a detailed description of the profile, see “If you link when you are not signed in to the instrument” on page 116.

1. In the **Sign In** screen, tap **Get started ▸ Connect**.

2. **(Optional) Select the appropriate region.**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>For users in China</td>
</tr>
<tr>
<td>U.S.</td>
<td>For users in any country other than China</td>
</tr>
</tbody>
</table>
3. Tap a connection option.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Mobile devices]</td>
<td>Note: Before selecting this option, install and sign in to the Connect application on your mobile device.</td>
</tr>
<tr>
<td></td>
<td>On the instrument:</td>
</tr>
<tr>
<td></td>
<td>1. Tap ![Mobile devices].</td>
</tr>
<tr>
<td></td>
<td>2. Hold the camera on your mobile device over the QR code that is displayed on the touchscreen.</td>
</tr>
<tr>
<td></td>
<td>3. Tap Close.</td>
</tr>
<tr>
<td>![PC]</td>
<td>A link code is displayed on the instrument.</td>
</tr>
<tr>
<td></td>
<td>On a computer:</td>
</tr>
<tr>
<td></td>
<td>1. Access the Connect platform.</td>
</tr>
<tr>
<td></td>
<td>2. Click Add instrument.</td>
</tr>
<tr>
<td></td>
<td>3. Select QuantStudio.</td>
</tr>
<tr>
<td></td>
<td>4. Enter the link code.</td>
</tr>
<tr>
<td>![Instrument]</td>
<td>Enter your Connect account information, then tap Link account.</td>
</tr>
</tbody>
</table>

4. *(Optional)* In the Enter PIN screen, tap the PIN *(4 digits required)* field, enter a four-digit numerical PIN, then tap Enter.
 Tap the Show PIN checkbox to show or hide the PIN.

5. *(Optional)* Tap the Confirm PIN field, enter the four-digit numerical PIN again, then tap Enter.

6. Tap Done.

Create a new local instrument profile

A local instrument profile is not compatible with Connect-enabled features. A local instrument profile can be linked to Connect at a later time.

To link a local instrument profile to Connect at a later time, see “Link a local profile to a Connect profile” on page 113.

For a description of linking a local instrument profile to Connect, see “If you link when you are signed in to the instrument” on page 115.

1. In the Sign In screen, tap Get Started.

2. Tap Create Profile.

3. Tap the User name field, enter a user name, then tap Enter.
4. Tap the **PIN (4 digits required)** field, enter a four-digit numerical PIN, then tap **Enter**.
 Tap the **Show PIN** checkbox to show or hide the PIN.

5. Tap the **Confirm PIN** field, enter the four-digit numerical PIN again, then tap **Enter**.

6. Tap **Create Profile**.

Proceed immediately to set up facial authentication (see “Set up facial authentication at the initial creation of an instrument profile” on page 117) or tap **Skip** to set up facial authentication at a later time.

Link a local profile to a Connect profile

This section describes linking a local instrument profile to a Connect profile, if a local instrument profile was created first.

The first time you use your Connect account on an instrument, you will be prompted to create a four-digit numerical PIN. This PIN is to use when signing in to the instrument with your Connect account. It will apply to all other instruments when you use your Connect account. This does not change the password when signing in to your Connect account on a browser.

After the PIN is set up on the instrument, it must be changed with your Connect account on a browser (see “Change the PIN for a Connect profile” on page 119).

The first time the instrument is used with a Connect account, a region must be selected.

For a detailed description of the profile, see “If you link when you are signed in to the instrument” on page 115.

(Optional) Test the connection (see “Test the connection to the Connect platform” on page 109).

1. In the home screen, tap **Profile**.
 The **My Profile** screen is displayed.

2. Tap **Edit ➤ Link**.
 The **Connect to Connect Platform** screen is displayed.

3. (Optional) Select the appropriate region.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>For users in China</td>
</tr>
<tr>
<td>U.S.</td>
<td>For users in any country other than China</td>
</tr>
</tbody>
</table>
4. Tap a connection option.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅ Mobile devices</td>
<td>Note: Before selecting this option, install and sign in to the Connect application on your mobile device. On the instrument: 1. Tap ✅ Mobile devices. 2. Hold the camera on your mobile device over the QR code that is displayed on the touchscreen. 3. Tap Close.</td>
</tr>
<tr>
<td>✅ PC</td>
<td>A link code is displayed on the instrument. On a computer: 1. Access the Connect platform. 2. Click Add instrument. 3. Select QuantStudio. 4. Enter the link code.</td>
</tr>
<tr>
<td>✅ Instrument</td>
<td>Enter your Connect account information, then tap Link account.</td>
</tr>
</tbody>
</table>

5. *(Optional)* In the Enter PIN screen, tap the **PIN (4 digits required)** field, enter a four-digit numerical PIN, then tap Enter. Tap the Show PIN checkbox to show or hide the PIN.

6. *(Optional)* Tap the **Confirm PIN** field, enter the four-digit numerical PIN again, then tap Enter.

7. Tap Done.

Unlink a Connect account

Unlinking a Connect is done from the Connect platform on your computer. For more information about unlinking a Connect account, see “If you link when you are signed in to the instrument” on page 115 and “If you link when you are not signed in to the instrument” on page 116.

1. Sign in to your account on the desktop Connect platform.

2. In the left pane, click ✏️ (Instrument).

3. Select the instrument, then click ✖️ Disconnect.

4. Tap Confirm.
If you link when you are signed in to the instrument

In this scenario, your local instrument profile name is created manually on the instrument before you link. Your local instrument profile name differs from your Connect instrument profile name.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Steps that occur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before you link:</td>
<td>• You enter your local instrument profile name in the Sign In screen.</td>
</tr>
<tr>
<td></td>
<td>• Your local instrument profile (UserABC) is displayed in the home screen of the instrument.</td>
</tr>
<tr>
<td></td>
<td>• All plates and results that you create are accessible only when you are signed in with your local instrument profile.</td>
</tr>
<tr>
<td>When you link:</td>
<td>• You link your local instrument profile (see “Link a local profile to a Connect profile” on page 113).</td>
</tr>
<tr>
<td></td>
<td>• If this is the first time you link, a Connect instrument profile is created using the FirstNameLastInitial of the user name from your thermofisher.com account.</td>
</tr>
<tr>
<td></td>
<td>Example: User1@thermofisher.com First name is User, Last name is Gray. Connect account username is User G.</td>
</tr>
<tr>
<td></td>
<td>• Your local instrument profile (UserABC) is linked to your Connect account (User1@thermofisher.com).</td>
</tr>
<tr>
<td></td>
<td>• Your Connect instrument profile (User G.) replaces your local instrument profile.</td>
</tr>
<tr>
<td>After you link:</td>
<td>• Your Connect instrument profile (User G.) and ☰ is displayed in the home screen of the instrument.</td>
</tr>
<tr>
<td></td>
<td>• Plate files and data files from your local instrument profile can be transferred to Connect.</td>
</tr>
<tr>
<td></td>
<td>• New plate files and data files are saved under your Connect instrument profile.</td>
</tr>
<tr>
<td></td>
<td>• Your Connect instrument profile name (User G. ☰) is available for selection in the Sign In screen.</td>
</tr>
<tr>
<td>If your Connect account is</td>
<td>• Your local instrument profile (UserABC) is displayed in the home screen of the instrument.</td>
</tr>
<tr>
<td>unlinked:</td>
<td>• Plate files and data files that were saved under your Connect instrument profile are accessible under your local instrument profile.</td>
</tr>
<tr>
<td></td>
<td>• Plate files and data files are saved under local instrument profile and can be copied to Connect (see “Copy plate files” on page 72 and “Transfer data files at a later time” on page 76).</td>
</tr>
<tr>
<td></td>
<td>• Your local instrument profile name (UserABC) is available for selection in the Sign In screen.</td>
</tr>
</tbody>
</table>
If you link when you are not signed in to the instrument

In this scenario, your local instrument profile name is created automatically at the time that you link. The same user name is used for your local instrument profile and your Connect profile. Plates and results are accessible when you sign in with either profile.

If you link to Connect when you are not signed in to the instrument:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Steps that occur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before you link:</td>
<td>• In the Sign In screen, you tap Get Started › Connect.</td>
</tr>
<tr>
<td>When you link:</td>
<td>• You link your profile (see “Link the instrument to your Connect account” on page 111).</td>
</tr>
<tr>
<td></td>
<td>• If this is the first time you link, a Connect instrument and a local instrument profile (with standard role) are created with the same name using the FirstNameLastInitial of the user name from your thermofisher.com account. Example: User1@thermofisher.com First name is User, Last name is Gray. Connect account username is User G.</td>
</tr>
<tr>
<td></td>
<td>• Your local instrument profile (User G.) is linked to your Connect account (User1@thermofisher.com).</td>
</tr>
<tr>
<td></td>
<td>• Your Connect instrument profile (User G.) replaces your local instrument profile.</td>
</tr>
<tr>
<td>After you link:</td>
<td>• Your Connect instrument profile (User G.) and 🔒 is displayed in the home screen of the instrument.</td>
</tr>
<tr>
<td></td>
<td>• Plate files and data files from your local instrument profile can be transferred to Connect.</td>
</tr>
<tr>
<td></td>
<td>• New plate files and data files are saved under your Connect instrument profile.</td>
</tr>
<tr>
<td></td>
<td>• Your Connect instrument profile name (User G. 🔒) is available for selection in the Sign In screen.</td>
</tr>
<tr>
<td>If your Connect account is unlinked:</td>
<td>• Your local instrument profile (User G.) is displayed in the home screen of the instrument.</td>
</tr>
<tr>
<td></td>
<td>• Plate files and data files that were saved under your Connect instrument profile are accessible under your local instrument profile.</td>
</tr>
<tr>
<td></td>
<td>• New plates and results are saved under local instrument profile and can be copied to Connect.</td>
</tr>
<tr>
<td></td>
<td>• Your local instrument profile name (User G.) is available for selection in the Sign In screen.</td>
</tr>
</tbody>
</table>

IMPORTANT! If you sign in with a local profile, without linking to the Connect platform, sign out, then link to Connect (Get Started › Connect), you can potentially have two instrument profiles with different names. Plate files and data files from when you are signed in with one instrument profile are not accessible when you are signed in with the other instrument profile.
Manage individual instrument profiles

Create an administrator instrument profile during initial start-up

The first instrument profile that is created during installation is assigned the role of an instrument administrator. Administrators can grant administrative privileges to other users (see “Enable or disable administrator privileges” on page 120).

Note: An instrument administrator is separate from a Connect administrator (see “Recommended order to set up profiles” on page 108).

1. Tap Name, enter a user name, then tap Done.
2. Tap PIN, enter a four-digit numerical PIN, then tap Enter.
 Note: Tap the PIN checkbox to switch the PIN display on or off.
3. Tap Confirm PIN, then enter the four-digit numerical PIN again.
4. Tap Create Profile.

Set up facial authentication at the initial creation of an instrument profile

When a profile is set up for facial authentication, the photographs should reflect how the user appears in the lab. For example, safety glasses should be worn to set up facial authentication if safety glasses will be worn when signing in.

1. On the Instrument Profile page, tap Set up now.
2. Prepare for the photographs, then tap Next.
3. Center your face within the green frame, then tap Start.
 Note: You must position yourself close enough to the instrument so that the green frame shows only your face without any of the surrounding background. This position is closer to the instrument than when you sign in with facial authentication.
 The instrument will take three separate photos after you tap Capture. The instrument will display a countdown before each individual photo is taken.
4. Tap one of the following options.
 - Done
 - Re-take
5. Tap Done after Your instrument profile has been created is displayed.
Add facial authentication to an existing instrument profile

When a profile is set up for facial authentication, the photographs should reflect how the user appears in the lab. For example, safety glasses should be worn to set up facial authentication if safety glasses will be worn when signing in.

1. Sign in.
 See “Sign in with a PIN” on page 43.

2. In the home screen, tap (Profile) ↱ Facial profile ↱ Set up now.
 Note: The instrument must be configured for facial authentication (see “Configure the instrument for the hands-free features” on page 166). The Facial profile button will not display if the instrument is not configured for facial authentication.

3. Prepare for the photographs, then tap Next.

4. Center your face within the green frame, then tap Start.
 Note: You must position yourself close enough to the instrument so that the green frame shows only your face without any of the surrounding background. This position is closer to the instrument than when you sign in with facial authentication.
 The instrument will take three separate photos after you tap Capture. The instrument will display a countdown before each individual photo is taken.

5. Tap one of the following options.
 - Done
 - Re-take

Change the PIN for an instrument profile

This section describes changing a PIN for a local instrument profile. To change a PIN for a Connect profile, see “Change the PIN for a Connect profile” on page 119.

1. In the home screen, tap (Profile).

2. Tap Edit.

3. Tap the Old PIN field, enter the current four-digit numerical PIN, then tap Enter.

4. Tap the PIN (4 digits required) field, enter a new four-digit numerical PIN, then tap Enter.
 Tap the Show PIN checkbox to show or hide the PIN.

5. Tap the Confirm PIN field, enter the new four-digit numerical PIN again, then tap Enter.

6. Tap Done.
Change the PIN for a Connect profile

This section describes changing a PIN for a Connect profile. To change a PIN for a local instrument profile, see “Change the PIN for an instrument profile” on page 118.

1. Sign in to Connect on a browser.
2. Click Update PIN number.
3. In the Update PIN number dialog box, enter a new PIN, then enter the new PIN a second time to confirm it.
4. Click Send.

The 4-digit PIN to sign in to instruments with your Connect profile is updated. This change applies to all of the instruments that you access with your Connect profile.

Manage all instrument profiles as an administrator

View all instrument profiles

1. In the home screen, tap (Profile). The My Profile screen is displayed.
2. Tap All accounts. A list of all the profiles is displayed. The following information is included for each profile.
 - Name
 - Date and time created
 - Role (standard or administrator)
 - Location (local or Connect)
3. (Optional) Tap a column in the table to sort by that parameter.
4. Tap Done.

Reset the PIN for a profile

1. In the home screen, tap (Profile). The My Profile screen is displayed.
2. Tap All accounts. A list of all the profiles is displayed.
3. Tap a profile. The Manage Account screen is displayed.
4. Tap Delete PIN, then tap Yes.
5. Tap Done to return to the My Profile screen.
The profile must have a new PIN added the next time it is accessed.

Add a profile

1. In the home screen, tap (Profile).
 The My Profile screen is displayed.

2. Tap All accounts.

3. Tap Add profile.

4. Tap the User name field, enter a user name, then tap Enter.

5. Tap the PIN (4 digits required) field, enter a four-digit numerical PIN, then tap Enter.
 Tap the Show PIN checkbox to show or hide the PIN.

6. Tap the Confirm PIN field, enter the four-digit numerical PIN again, then tap Enter.

7. Tap Create profile.
 The new profile is displayed on the My Profile screen. The new profile is assigned a standard role.

To enable administrator privileges, see “Enable or disable administrator privileges” on page 120.

Enable or disable administrator privileges

Administrator privileges can only be enabled or disabled on the instrument for local instrument profiles. Connect instrument profiles can only have instrument administrator privileges enabled or disabled on the Connect platform.

1. In the home screen, tap (Profile).
 The My Profile screen is displayed.

2. Tap All accounts.

3. Tap a profile.
 The Manage Account screen is displayed.

4. Set the Grant admin rights slider to No or Yes.

5. Tap Done.
 The user role will be updated on the My Profile screen.
Delete a profile

1. In the home screen, tap 📋 (Profile).
 The **My Profile** screen is displayed.

2. Tap **All accounts**.

3. Tap a profile.
 The **Manage Account** screen is displayed.

4. Tap **Delete account**.

5. Tap **Yes** to confirm.
 The profile is deleted and it is not listed on the **My Profile** screen.
Use the instrument with the Security, Auditing, and E-signature (SAE) v2.0 module

- Overview of the Security, Auditing, and E-signature (SAE) v2.0 module components .. 123
- Overview of the instrument features when the SAE module is enabled 123
- Security, Auditing, and E-signature (SAE) v2.0 module functions 124
- Security, Auditing, and E-signature (SAE) v2.0 module roles 125
- Dialog boxes in the SAE module .. 126
- Profiles when the SAE module is enabled 127
- SAE-enabled system components .. 127
- Enable SAE functions .. 129
- Disable SAE on the instrument (administrator only) 132
- Sign in as a local administrator with SAE enabled 133
- Sign in with SAE enabled .. 134
- Sign out with SAE enabled .. 135
- Change your SAE account password on the instrument 136
- Sign a plate setup ... 137
- Enter an audit reason .. 138
- View signing records for a plate file 139
- View audit records ... 140
- Use the instrument when the SAE server is offline 141
- E-signature requirements to start a run 141
- Signing in after automatic screen locking 142
- SAE error messages and actions 142

The Security, Auditing, and E-signature (SAE) v2.0 module is only compatible with the QuantStudio™ 7 Pro Real-Time PCR System.

For more information about the module, including definitions of accounts and roles, see the SAE Administrator Console v2.0 User Guide (Pub. No. MAN0017468).
Overview of the Security, Auditing, and E-signature (SAE) v2.0 module components

The Security, Auditing, and E-signature (SAE) v2.0 module includes three components:

- **SAE Administrator Console** that an administrator uses to configure the module.
- **SAE server** that stores settings, user accounts, audit records, and e-signature records. By default, the SAE server is installed on the same computer as the SAE Administrator Console.
- **SAE screens** in an application (sign in and audit that a user interacts with). The QuantStudio™ 7 Pro Real-Time PCR System is an application.

The Security, Auditing, and E-signature (SAE) v2.0 module provides the following SAE functionality on the instrument:

- **System security**—Controls user sign in and access to functions
- **Auditing**—Tracks changes and actions performed by users.
- **E-signature**— Allows users to provide an electronic signature (user name and password) when performing certain functions.

Overview of the instrument features when the SAE module is enabled

The following instrument features are not available when the SAE module is enabled:

- Facial authentication
- Voice activation
- Linking to the Connect cloud-based platform, including using a Connect cloud-based platform account to log in
- System templates

Only SAE-enabled plate files that were created in the QuantStudio™ Design and Analysis Software v2 can be opened on the instrument.
Security, Auditing, and E-signature (SAE) v2.0 module functions

Functions that are controlled

The following functions are controlled, depending on the user role:

- Plate setup, including the following functions:
 - Create a new template
 - Edit the run method
 - Edit the analysis settings
 - Define, edit, or delete the targets or the assays
 - Assign the target or the assay
 - Define, edit, or delete the sample
 - Assign the samples
 - Define, edit, or delete the reagents
 - Assign the reagents
- Add and delete a custom dye
- Start and stop an instrument run
- Calibration runs and RNase P verification runs
- Instrument configuration, including the following functions:
 - Software update
 - Network configuration
 - Instrument name change
 - Date and time change
 - SAE module setting modification
 - Sleep setting modification
 - Instrument access modification
 - Disk management setting modification
 - Instrument back-up and restore a back-up
- Log into timed out sessions
- Perform e-signatures
Functions that can be audited

Certain instrument functions can be audited. This depends on how the SAE administrator has configured the audit settings.

The following functions can be audited:

- Changes to a plate file, including the following items:
 - Plate layout
 - Analysis settings
 - Run method
 - Samples
 - Assays
- Sign in success and sign in failure
- Sign out
- Enable and disable the Security, Auditing, and E-signature (SAE) v2.0 module
- Perform a calibration run
- Perform an RNase P verification run
- Start and stop an instrument run
- Pause and resume an instrument run

Functions that can be signed

Certain instrument functions can be signed. This depends on how the SAE administrator has configured the e-signature settings.

The following functions can be signed with an e-signature:

- Start and instrument run
- Plate setup
- Plate results

Security, Auditing, and E-signature (SAE) v2.0 module roles

<table>
<thead>
<tr>
<th>Role name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator</td>
<td>Has all the available privileges.</td>
</tr>
<tr>
<td>Scientist</td>
<td>Has all the privileges, except for privileges related to instrument configuration and maintenance.</td>
</tr>
<tr>
<td>Technician</td>
<td>Has access to the instrument to perform a run.</td>
</tr>
</tbody>
</table>
Dialog boxes in the SAE module

Some of the features and functions described might not be accessible to you. The features and functions that are available depend on the way that the SAE administrator has configured them.

When you use the software, the dialog boxes and prompts shown in the following table can appear.

<table>
<thead>
<tr>
<th>Dialog box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>An action is set up for auditing and requires you to specify a reason for the action.</td>
</tr>
<tr>
<td></td>
<td>An action is set up for electronic signature and allows you to enter your password to allow the action.</td>
</tr>
</tbody>
</table>

If you do not have access to a function, you will not be able to select it.

For example, the buttons to start any of the calibrations are inactive if your role is not able to perform a calibration.
Profiles when the SAE module is enabled

After the SAE module is enabled on the instrument, the local instrument profiles and the Connect cloud-based platform profiles will not be available.

An account from the SAE Administrator Console must be used to sign in to the instrument when the SAE module is enabled. A local instrument administrator can sign in to the instrument to perform limited administrator functions.

The local instrument profiles and the Connect cloud-based platform profiles are available if the SAE module is disabled.

SAE-enabled system components

Note: SAE functions are not compatible with the QuantStudio™ 6 Pro Real-Time PCR System.

The following system components can be used with SAE functions enabled:

- QuantStudio™ Design and Analysis Software v2
- QuantStudio™ 7 Pro Real-Time PCR System
Chapter 9 Use the instrument with the Security, Auditing, and E-signature (SAE) v2.0 module

SAE-enabled system components

- QuantStudio™ 7 Pro Real-Time PCR System plate file—SAE-enabled plate files are created in the QuantStudio™ Design and Analysis Software v2 with SAE enabled.
 - If SAE is enabled in the QuantStudio™ Design and Analysis Software v2, you can only create plate files for the QuantStudio™ 7 Pro Real-Time PCR System.
 - If SAE is enabled on the QuantStudio™ 7 Pro Real-Time PCR System, you cannot create or edit a plate file from the instrument touchscreen.
- QuantStudio™ 7 Pro Real-Time PCR System data file—SAE-enabled data files are created on the QuantStudio™ 7 Pro Real-Time PCR System with SAE enabled.

We recommend enabling SAE for all system components (see “Enable SAE functions” on page 129). If one or more of the components have conflicting SAE status, some functions may not be available (see “Compatibility between SAE-enabled and SAE-disabled components” on page 128).

Compatibility between SAE-enabled and SAE-disabled components

We recommend enabling SAE for all system components (for more information, see “Enable SAE functions” on page 129). If one or more of the components have conflicting SAE status, some functions may not be available. See the following table for more information.

<table>
<thead>
<tr>
<th>Component</th>
<th>Functionality with an SAE-enabled plate or data file</th>
<th>Functionality with an SAE-disabled plate or data file</th>
</tr>
</thead>
</table>
| QuantStudio™ Design and Analysis Software v2 with SAE enabled | • The file can be edited depending on SAE configuration.
 • The audit record is continued. | • The file is opened in read-only mode.
 • The file cannot be edited or saved. |
| QuantStudio™ Design and Analysis Software v2 with SAE disabled | The software action depends on the application profile specified in the SAE Administrator Console.
 • SAE-disabled files allowed—The file is opened and can be edited. The file can be saved as an invalid SAE file only.[1]
 • QuantStudio™ 7 Pro Real-Time PCR System forbidden—The file cannot be opened. | The file can be opened, edited, and saved. |
| QuantStudio™ 7 Pro Real-Time PCR System with SAE enabled | • The file can be opened from the run queue, a USB drive, or other sources.[2]
 • The file can not be edited.
 • The audit record is continued. | The file cannot be opened. |
Component Functionality with an SAE-enabled plate or data file | Functionality with an SAE-disabled plate or data file
---|---
QuantStudio™ 7 Pro Real-Time PCR System with SAE disabled
• The plate file can be opened and edited.
• The file can be saved as an invalid SAE file only.[1]
• The file can be used to start an run, but the data file will be an invalid SAE file.[1]
The file can be opened, edited, and saved.

[1] Invalid SAE files contain incomplete audit records.
[2] You cannot import plate files from the Connect cloud-based platform when the instrument has SAE enabled.

Enable SAE functions

Workflow: Enable SAE functions

Configure SAE Administrator Console application profiles
(page 129)

Enable SAE on the instrument and specify the SAE server
(administrator only) (page 130)

Connect to the SAE server (page 131)

Enable SAE functions in QuantStudio™ Design and Analysis Software v2 (page 131)

Configure SAE Administrator Console application profiles

Note: Configuring application profiles in the SAE Administrator Console requires an SAE administrator account.

In the SAE Administrator Console, an application profile contains default settings for an application. Before using the Security, Auditing, and E-signature (SAE) v2.0 module, an administrator must install, then configure profiles for the following applications:

1. QuantStudio™ 7 Pro Real-Time PCR System
2. QuantStudio™ Design and Analysis Software v2

Note: The QuantStudio™ 7 Pro Real-Time PCR System profile must be installed before the QuantStudio™ Design and Analysis Software v2 profile.

For information on configuring application profiles, see SAE Administrator Console v2.0 User Guide (Pub. No. MAN0017468).
Enable SAE on the instrument and specify the SAE server (administrator only)

This procedure requires a local administrator profile on the instrument and an SAE administrator account in the SAE Administrator Console.

1. In the home screen, tap \(\text{(Settings)} \) \(\rightarrow \) SAE.
 The SAE Mode screen is displayed.

2. In the SAE Mode screen, set the SAE Mode slider to Enable.

3. Tap the Server IP field, then enter the IP address of the SAE server.

4. Tap the Port field, enter the port, then tap Next.

5. Enter the SAE administrator user name and password when prompted, then tap Enable.

The home screen is displayed. The SAE administrator is signed in.
Connect to the SAE server

- Install the SAE Administrator Console and the SAE server on a computer with a static IP address.
- Before you connect, close all plate files and data files.

Note: Connect the software and any instruments to the same SAE server to ensure that audit records are maintained across system components.

1. In the menu bar, click **System ▶ SAE Connection Settings**.
2. Enter the IP address and port number of the SAE server.
3. *(Optional)* Click **Test Connection** to confirm that the connection information is correct.
4. Click **Save**.

Enable SAE functions in QuantStudio™ Design and Analysis Software v2

This procedure requires an SAE administrator account.

Before you enable SAE functions in the QuantStudio™ Design and Analysis Software v2, you must complete the following tasks:

- Connect to the SAE server (see “Connect to the SAE server” on page 131).
- Close all plate files and data files.

1. In the QuantStudio™ Design and Analysis Software v2, select **System ▶ Enable Security**.
2. Enter your SAE administrator account username and password, then click **Sign In**.

The SAE administrator account is automatically signed into the software after SAE is enabled. The SAE username is displayed in the upper-right corner of the software menu bar.
Disable SAE on the instrument (administrator only)

This procedure requires a local administrator profile and an SAE administrator account.

Sign in with a local administrator account (see “Sign in as a local administrator with SAE enabled” on page 133).

1. In the home screen, tap (Settings) ➔ SAE.
 The SAE Mode screen is displayed.

2. In the SAE Mode screen, set the SAE Mode slider to the Disable position, then tap Done.

3. Enter the password for the SAE administrator account, then tap Disable.
 The user name for the SAE administrator account is filled out and cannot be edited.

The Sign In screen is displayed.
Sign in as a local administrator with SAE enabled

Sign in as a local administrator to access the instrument settings. Plate files are not accessible if you are signed in as a local administrator.

1. In the Sign In screen, tap Sign in under Local sign in.

 ![Sign In screen](image)

 ① Sign in for administrator

 The Local Administrator Sign In screen is displayed.

2. In the Local Administrator Sign In screen, select your local administrator profile.

3. Enter your PIN, then tap Enter.

 The Settings screen is displayed.
Sign in with SAE enabled

You must create a profile on the SAE Administrator Console before you sign in when SAE is enabled on the instrument.

1. In the **Sign In** screen, tap **Sign in** under **SAE sign in**.

![Sign In screen](image)

 1. Sign in to an SAE account
 The **SAE Sign In** screen is displayed.

2. In the **SAE Sign In** screen, enter your SAE user name and your SAE password, then tap **Sign in**.

![SAE Sign In screen](image)

 Figure 16 **SAE Sign In** screen

The home screen is displayed.
Sign out with SAE enabled

1. In the home screen, tap **(Profile)**.
 The My Profile screen is displayed. The SAE button is selected and the profile that is signed in is listed.

2. Tap **Sign out**, then tap **Yes** to confirm.
 You are signed out and the Sign in screen is displayed.
Change your SAE account password on the instrument

You must be signed in with the instrument in SAE mode (see “Sign in with SAE enabled” on page 134).

1. In the home screen, tap (Profile).
 The My Profile screen is displayed. The SAE button is selected, and the profile that is signed in is listed.

![My Profile screen](image)

 ① SAE button is active
 ② Profile that is signed in

2. Tap Edit.
 The Edit My Profile screen is displayed.
Chapter 9 Use the instrument with the Security, Auditing, and E-signature (SAE) v2.0 module

Sign a plate setup

3. Tap the Old password field, enter the current SAE account password, then tap Enter.

4. Tap the New password field, enter a new SAE account password, then tap Enter.
 (Optional) Tap the Show password checkbox to show or hide the password.

5. Tap the Confirm password field, enter the new SAE account password again, then tap Enter.

6. Tap Done.

Your SAE password will also be changed on the QuantStudio™ Design and Analysis Software v2.

Sign a plate setup

1. In the home screen, tap one of the following options:
 - (Load plate file)
 - Set up run

2. Tap the location of the system template or the plate file in the left column.
 - Run Queue
 - Public
 - My Instrument
 - Network Drive
 - USB
3. Tap the template file name in the right column. The **Plate Properties** screen is displayed.

4. In the **Plate Properties** screen, tap **Actions**. The **Actions** screen is displayed.

5. Tap **Sign plate**. The **Sign Plate** screen is displayed.

6. Select the purpose from the **Purpose** dropdown list.

7. Enter your SAE user name and password.

8. Tap **Sign plate**.

Enter an audit reason

Depending on the way that your SAE administrator configures audit settings, the **Enter Audit Reason** screen may be displayed when you make changes to one of the following items:

- Plate file
- Calibration
- RNase P run
View signing records for a plate file

1. In the home screen, tap one of the following options:
 - 📝 (Load plate file)
 - Set up run

2. Tap the location of the system template or the plate file in the left column.
 - 📑 Run Queue
 - 📑 Public
 - 📑 My Instrument
 - 📑 Network Drive
 - 📑 USB

3. Tap the template file name in the right column.
 The Plate Properties screen is displayed.

4. In the Plate Properties screen, tap Actions.
 The Actions screen is displayed.

5. Tap View signing records.
 The Signing records screen is displayed.
View audit records

The audit records cannot be viewed on the instrument touchscreen. The audit records are viewed on the QuantStudio™ Design and Analysis Software v2 or on the SAE Administrator Console.
Use the instrument when the SAE server is offline

If your SAE administrator has configured your instrument to allow use when the SAE server is offline (Client offline login System setting in the SAE module), you can use the instrument for the period of time specified by the SAE administrator for Client offline login.

Note: If you have not previously signed in to the instrument with your SAE account, you cannot sign in when the SAE server is offline.

All SAE records are retained if the instrument is disconnected from an SAE server. When the instrument is reconnected to the SAE server, SAE records are uploaded to the server.

The following functions are not available when the SAE server is offline:
- Account lockout, password reminder, mandatory password change
- Disable SAE
- Change Password

E-signature requirements to start a run

Depending on the way your SAE administrator has configured your instrument, E-signatures may be required when you start a run. If starting a run is configured to require signatures, a message is displayed when you start a run.

Tap Sign plate to sign the plate and start the run.
Signing in after automatic screen locking

Depending on the way your SAE administrator has configured your instrument, the instrument touchscreen may automatically lock after a specified duration.

An Administrator role or a Scientist role can sign in after automatic screen locking.

SAE error messages and actions

<table>
<thead>
<tr>
<th>Message</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unable to connect to SAE server. Check current connections.</td>
<td>The SAE server connection settings are incorrect.</td>
<td>1. Check the SAE server IP address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. In the instrument Sign In screen, sign in with a local administrator account.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Set the correct IP address (see "Enable SAE on the instrument and specify the SAE server (administrator only)" on page 130).</td>
</tr>
<tr>
<td>There is a problem with the computer on which the SAE Administrator Console is installed or a problem with the network.</td>
<td></td>
<td>Troubleshoot computer or network problems.</td>
</tr>
<tr>
<td>The computer on which the SAE Administrator Console has a dynamic IP address that is disconnecting the server when the computer is restarted.</td>
<td></td>
<td>Set a static IP address on the computer.</td>
</tr>
</tbody>
</table>
Install a block

This section describes installing a block when there is no block in the instrument. To change a block, see “Change the block” on page 144.

A block can be installed by any user. This function is not restricted to administrators.

Each combination of a block and an instrument has its own calibration status. To determine the calibration status of a block on an instrument, see “View the calibration status and set reminders” on page 81. To calibrate a block on a specific instrument, see Chapter 7, “Calibrate and verify instrument performance”.

1. Tap (Settings) › Change block.

2. Insert the block and heated cover into the instrument drawer.
 The instructions are displayed on the screen.

3. Tap Install.

The instrument displays one of the following options, depending on the calibration status:

- Confirmation that the block was installed successfully and the expiration date of the current calibration.
- A warning that the block is not calibrated on the instrument.
- A warning that the calibration of the block on the instrument is expired.
Change the block

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the sample block temperature can reach 100°C. Allow it to cool to room temperature before handling.

This section describes changing a block and heated cover when there is already a block installed. To install a block when one is not installed, see “Install a block” on page 143.

A block can be changed by any user. This function is not restricted to administrators.

Each combination of a block and an instrument has its own calibration status. To determine the calibration status of a block on an instrument, see “View the calibration status and set reminders” on page 81. To calibrate a block on a specific instrument, see Chapter 7, “Calibrate and verify instrument performance”.

1. Tap (Settings) > Change block.

2. In the Change Block screen, tap Change, then tap Ok.
 The instrument unlocks the block and the heated cover. This step takes approximately one minute. The drawer opens with the block and the heated cover.

3. Use the handles to remove the block and the heated cover.
 The instructions are displayed on the screen.
 The block and the heated cover are removed together.

 IMPORTANT! Only touch the block and the heated cover at the handles.

4. Insert the new block and the heated cover into the instrument drawer, then tap Install.
 The Install button is inactive until the instrument detects a block and heated cover that are positioned correctly in the drawer.
The instrument displays one of the following options, depending on the calibration status:

- Confirmation that the block was installed successfully and the expiration date of the current calibration.
- A warning that the block is not calibrated on the instrument.
- A warning that the calibration of the block on the instrument is expired.

It is recommended to store the block and the heated cover in the provided protective box when they are not installed on an instrument.

Remove the block

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the sample block temperature can reach 100°C. Allow it to cool to room temperature before handling.

This section describes removing the block and heated cover without installing another block and heated cover into the instrument.

1. Tap (Settings) › Change block.
2. In the Change Block screen, tap Change.
3. Tap OK.
 The instrument unlocks the block and the heated cover. This step takes approximately one minute. The drawer opens with the block and the heated cover.
4. Use the handles to remove the block and the heated cover.
 The block and the heated cover are removed together.

IMPORTANT! Only touch the block and the heated cover at the handle.

5. Tap (Eject) to close the instrument drawer.
It is recommended to store the block and the heated cover in the provided protective box when they are not installed on an instrument.

Decontaminate the sample block

Perform this procedure to eliminate fluorescent contaminants from the instrument sample block. Contamination is generally evident in failed background calibrations where one or more wells consistently exhibit abnormally high signals.

CAUTION! PHYSICAL INJURY HAZARD. Do not remove the instrument cover. There are no components inside the instrument that you can safely service yourself. If you suspect a problem, contact Support.

CAUTION! PHYSICAL INJURY HAZARD. During instrument operation, the sample block temperature can reach 100°C. Allow it to cool to room temperature before handling.

CAUTION! Before using a cleaning or decontamination method other than those recommended by Thermo Fisher Scientific, confirm with Thermo Fisher Scientific that the proposed method will not damage the equipment.

Materials required

- Safety glasses
- Powder-free gloves
- Tissue, lint-free
- Cotton or nylon swabs and lint-free cloths
- Pipette (100-µL) with pipette tips
- Deionized water
- Ethanol, 95% solution
- Bleach, 10% solution
Clean the sample block

CAUTION! **PHYSICAL INJURY HAZARD.** During instrument operation, the sample block temperature can reach 100°C. Allow it to cool to room temperature before handling.

IMPORTANT! Wear powder-free gloves when you perform this procedure.

IMPORTANT! Always use deionized water to rinse wells after cleaning with bleach or ethanol solution.

1. Identify the contaminated wells of the sample block (see “Identify contamination” on page 90).

2. Remove the sample block and heated cover (see “Remove the block” on page 145).

3. Place the sample block and heated cover on a clean surface.

4. Rinse the contaminated wells with deionized water (see “Detailed procedures for cleaning the sample block” on page 148).

5. Install the block and heated cover (see “Install a block” on page 143).

6. Perform a background calibration to confirm that you have eliminated the contamination (see “Perform calibrations” on page 86).

7. If the contamination remains, clean the contaminated wells with a 95% ethanol solution.

 Repeat step 2 to step 6 with a 95% ethanol solution (see “Detailed procedures for cleaning the sample block” on page 148).

IMPORTANT! Always use deionized water to rinse wells after cleaning with bleach or ethanol solution.
8. If the contamination remains, clean the contaminated wells with a 10% bleach solution.

Repeat step 2 to step 6 with a 10% bleach solution (see “Detailed procedures for cleaning the sample block” on page 148).

IMPORTANT! Always use deionized water to rinse wells after cleaning with bleach or ethanol solution.

9. Use Smart Help if the contamination remains (see “Request technical support with Smart Help” on page 159).

Detailed procedures for cleaning the sample block

IMPORTANT! Use these cleaning procedures only in conjunction with the complete decontamination procedure (see “Clean the sample block” on page 147).

- Rinse the sample block with deionized water.
 a. Pipet a small volume of deionized water into each contaminated well.
 b. In each well, pipet the water up and down several times to rinse the well.
 c. Pipet the water to a waste beaker.
 d. Use a cotton swab to scrub inside of each contaminated well.
 e. Use a lint-free cloth to absorb the excess deionized water.

- Clean the sample block with 95% ethanol.
 a. Pipet a small volume of 95% ethanol solution into each contaminated well.
 b. In each well, pipet the solution up and down several times to rinse the well.
 c. Pipet the ethanol solution to a waste beaker.

IMPORTANT! Always use deionized water to rinse wells after cleaning with bleach or ethanol solution.

- Clean the sample block with 10% bleach.
 a. Pipet a small volume of 10% bleach solution into each contaminated well.
 b. In each well, pipet the solution up and down several times to rinse the well.
 c. Pipet the bleach solution to a waste beaker.

IMPORTANT! Always use deionized water to rinse wells after cleaning with bleach or ethanol solution.
Replace the instrument fuses

CAUTION! FIRE HAZARD. For continued protection against the risk of fire, replace fuses only with listed and certified fuses of the same type and rating as those currently in the instrument.

Materials required

- Fuses (2) – 10A, Time-Lag T, 250VAC, 5 × 20 mm
- Safety glasses
- Powder-free gloves
- Screwdriver, flathead

Replace the fuses

1. Power off, then unplug the instrument.
2. Allow the instrument cool for 15 minutes.
3. Using a flat-head screwdriver, unscrew and remove the fuse holder.
4. Remove each fuse from its fuse holder, then inspect it for damage. Carbon typically coats the inside of failed fuses.

<table>
<thead>
<tr>
<th>Good</th>
<th>Failed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Replace each failed fuse.

Note: The voltage and amperage ratings are on the fuse holder.
6. Align each new fuse in the fuse holder as shown in the figure below.

![Fuse alignment in the fuse holder](image)

7. Install the fuse holder back into the instrument.

8. Plug in, then power on the instrument.
 The installation is successful if the instrument powers on.

Note: Fuse failure can result from fluctuations in the supplied power to the system. To prevent further failures, consider installing an electrical protective device, such as a UPS or a surge protector. If issues with the fuse persist, use Smart Help (see “Request technical support with Smart Help” on page 159).

Power on or off, store, and move

Enable and edit sleep mode

Sleep mode allows the instrument to use less energy when not in use. The length of time that the instrument is inactive before going into sleep mode can be customized.

1. In the home screen, tap (Settings) > Instrument settings > Sleep mode.
2. Set the slider.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>The instrument will not go into sleep mode.</td>
</tr>
<tr>
<td>On</td>
<td>The instrument will go into sleep mode after a period of inactivity.</td>
</tr>
</tbody>
</table>

3. Tap the **Idle time before sleep mode** field, then enter a time.
4. Tap Done.
Power on the instrument

If left unattended, the instrument automatically enters sleep mode to conserve power. The default time that an instrument is inactive before going into sleep mode is 15 minutes.

1. Tap anywhere on the touchscreen to determine if the instrument is in sleep mode.
 If the screen becomes active, the instrument is already powered on.

2. If the home screen does not display, power on the instrument by pressing the ON/OFF switch on the rear panel.

![ON/OFF switch](image)

Figure 21 Location of the ON/OFF switch

Note: The length of time that the instrument is inactive before going into sleep mode can be customized (see “Enable and edit sleep mode” on page 150).

Power off the instrument

1. Power off the instrument using the ON/OFF switch on the back of the instrument.
 For the location of the ON/OFF switch, see Figure 6 on page 42.

2. Power off the computer if there is a computer directly connected to the instrument.
Prepare the instrument to store, move, or ship

Remove the block and heated cover to store, move, or ship the instrument.

It is recommended to store the block and heated cover in the provided protective box when they are not installed on an instrument.

Ship the instrument and the block and heated cover separately.

1. In the home screen, tap (Settings) › Maintenance and service › Ship prep mode › Next.
 The Ship Prep Mode screen is displayed.

2. In the Ship Prep Mode screen, tap Next.

3. Follow the instructions on the touchscreen to remove the block and heated cover.

The instrument is now ready to store, move, or ship.

Move the instrument

CAUTION! PHYSICAL INJURY HAZARD. Do not attempt to lift the instrument or any other heavy objects unless you have received related training. Incorrect lifting can cause painful and sometimes permanent back injury. Use proper lifting techniques when lifting or moving the instrument. At least two people are required to lift it.

IMPORTANT! Moving your instrument can create subtle changes in the alignment of the instrument optics. Recalibrate the instrument if necessary.

- Ensure that the surface on which you place the instrument can support at least 35.85 kg (79 lbs.).
- Ensure that the path to transport the instrument is clear of obstructions.
- At least two people are needed to lift and carry the instrument.
- Keep your spine in a good neutral position.
- Bend at the knees and lift with your legs.
- Do not lift an object and twist your torso at the same time.
- Coordinate your intentions with your assistant before lifting and carrying.

IMPORTANT! After moving the instrument, perform an RNase P instrument verification run. If the run fails, perform ROI/ uniformity, background, and dye calibrations.
Configure the instrument settings

- View the instrument details ... 153
- View the license agreement ... 154
- View the privacy policy for the Connect cloud-based platform 154
- Configure the instrument settings ... 155
- Configure maintenance and service settings 159
- Configure the instrument for the hands-free features 166
- Manage the run history .. 166
- Manage the file name convention of the data file 167
- View the notifications .. 167
- Enable and disable home screen notifications 168
- Set up email notifications ... 168
- Clear the notifications ... 169

View the instrument details

1. In the home screen, tap ✎ (Settings) ➤ About instrument.
 The About Instrument screen displays the following information:
 - Model name
 - Wired IP address
 - Wireless IP address
 - Instrument serial number
 - Block serial number
 - Heated cover serial number
 - Block type
 - Software version

2. (Optional) Tap Details.
 The following information is displayed:
• Instrument model name
• Wired IP address
• Wired MAC address
• Wireless IP address
• Wireless MAC address
• Instrument serial number
• Block serial number
• Heated cover serial number

• Block type
• Software version
• Firmware version
• User interface version
• Instrument server version
• Heated cover firmware version
• Block firmware version

3. Tap 🔄 (Back) to return to the Settings screen.

View the license agreement

1. In the home screen, tap Settings ➤ About instrument. The About Instrument screen is displayed.

2. Tap EULA. The end user license agreement (EULA) is displayed.

3. (Optional) Tap Export.

4. Tap Close.

View the privacy policy for the Connect cloud-based platform

1. In the home screen, tap Settings ➤ Maintenance and service ➤ Connect services. The Connect Services screen is displayed.
2. Tap **Privacy**.
 The privacy policy is displayed.

3. Tap **Close**.

Configure the instrument settings

Enable or disable demonstration mode

Note: The instrument restarts when demonstration mode is turned on or off.

When the instrument is in demonstration mode, the following features apply:
- The instrument simulates a run but does not start a run.
- The instrument drawer will not open.

1. In the home screen, tap **(Settings) › Instrument settings › Demo mode.**
 Turn demo mode off is displayed if the instrument is in demo mode.

2. In the **Confirmation** screen, tap **Ok**.
 You will be prompted to restart the instrument.

Demo mode is displayed on the instrument when it is in demonstration mode.

Edit the instrument name (administrator only)

1. In the home screen, tap **(Settings) › Instrument settings › Instrument name.**

2. Tap the **Instrument name** field, then enter or edit the instrument name.
 The instrument name must be unique if it is connected to a network.

3. Tap **Done**.

Set the date and the time

The date and time can be set manually or automatically. The instrument must be connected to the internet to set the date and time automatically.

1. In the home screen, tap **(Settings) › Instrument settings › Date and time.**
 The **Date and Time** screen is displayed.

2. Set the slider to **Off** or **On** to determine if the date and time are set automatically.

3. **(Optional)** Select the time zone from the dropdown list.

4. Select the date format and the time format from the dropdown lists.

5. Tap **Done**.
Configure the heated cover settings

The heated cover can be heated when the instrument is idle or it can be left without being heated when the instrument is idle. To save power, configure the settings so the heated cover is left without heating. It will take longer to bring the heated cover up to the correct temperature when the instrument is brought back into use.

1. In the home screen, tap (Settings) > Instrument settings > Cover temperature.
 The Heated Cover screen is displayed.

2. Set the slider.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>The heated cover remains heated when the instrument is idle.</td>
</tr>
<tr>
<td>Off</td>
<td>The heated cover is not heated when the instrument is idle.</td>
</tr>
</tbody>
</table>

3. Tap the Cover temperature field to edit the heated cover temperature.

4. Tap Done.

Adjust the speaker volume

The selected speaker volume is saved for each user.

When a new Connect profile is linked to the instrument, the default speaker volume is set to the maximum.

1. In the home screen tap, (Settings) > Instrument settings > Speaker volume.
 The Volume Control screen is displayed.

2. Slide the control to the adjust the volume.
 The speakers are muted when the slider is at the far left side of the bar.

3. Tap Done.

Configure the network

For detailed instructions, see Appendix B, “Connect the instrument to a network”.

1. In the home screen tap (Settings) > Instrument settings > Network configuration.
 The Network Configuration screen is displayed.

2. Tap Edit.
 The fields for Wired and Wireless are now editable.
3. Enter the information that is needed for a wireless or wired connection.
 • Tap the **Network** field to enter network information for a wireless connection.
 • Tap the **IP address** field to enter the IP address for a wired connection.

4. *(Optional)* Tap **Proxy server** to connect the instrument to a proxy server (see “Connect a proxy server” on page 157).

5. Tap **Done**.

Connect a proxy server

A proxy server sits between the instrument and the main server. The proxy server intercepts requests to the main server and evaluates if it can complete the request. If it cannot fulfill the request, it will forward the request to the main server.

Consult your Network or IT specialist before linking the instrument to a proxy server.

1. In the home screen, tap \(\text{(Settings) \rightarrow Instrument settings \rightarrow Proxy server} \). The **Network Configuration** screen is displayed.

2. Tap each field to enter the required information.
 • **Proxy server**
 • **Proxy port**
 • **User name**
 • **Password**

3. Tap **Done**.

The instrument is connected to the specified proxy server.

Select the region for the Connect platform

Note: The instrument restarts when the region for the Connect platform is changed.

1. In the home screen, tap \(\text{(Settings) \rightarrow Instrument settings \rightarrow Connect region} \). The **Select Region** window opens.

2. Select the region.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>For users in China</td>
</tr>
<tr>
<td>U.S.</td>
<td>For users in any country other than China</td>
</tr>
</tbody>
</table>

3. Tap **Done**.
Select a disk storage management mode

This setting determines how the instrument manages data files when the disk space is full.

1. In the home screen, tap (Settings) Instrument settings Disk storage management.

2. Select a mode for disk storage management.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic</td>
<td>The instrument automatically deletes data files until there is disk space available to complete a run.</td>
</tr>
<tr>
<td></td>
<td>Note: The instrument deletes data files in chronological order, starting with the oldest files. Only data files that have been transferred to another location are deleted.</td>
</tr>
<tr>
<td></td>
<td>IMPORTANT! The system does not notify a user when data files are deleted.</td>
</tr>
<tr>
<td>Manual</td>
<td>The instrument will not delete data files when there is no disk space available to complete a run.</td>
</tr>
<tr>
<td></td>
<td>Note: The system notifies a user when data files must be deleted (see “Delete data files from the instrument” on page 77).</td>
</tr>
</tbody>
</table>

3. Tap Done.

Enable and edit automatic sign-out

The automatic sign-out feature signs out a user after a period of inactivity.

A run in progress is not considered inactivity. The period of inactivity begins after the run is complete.

The period of inactivity before a user is signed out automatically can be customized.

1. In the home screen, tap (Settings) Instrument settings Auto sign-out.

2. Set the slider.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>The instrument will not automatically sign out a user after a period of inactivity.</td>
</tr>
<tr>
<td>On</td>
<td>The instrument will automatically sign out a user after a period of inactivity.</td>
</tr>
</tbody>
</table>

3. Tap the Idle time before auto sign-out field, then enter a time.

4. Tap Done.
Set an access key for external software to connect to the instrument

1. In the home screen, tap (Settings) ➤ Instrument settings ➤ Instrument access.

2. In the Instrument Access screen, set the Enable access slider to the On position.
 The instrument displays an access code.

3. (Optional) Set the Visible to all users slider.
 The Visible to all users slider is only displayed if the Enable access slider is set to the On position.

4. Tap Close.

5. In the external software that is being used to connect to the instrument, enter the remote access key to add the instrument.

Reset the access key for external software to connect to the instrument

1. In the home screen, tap (Settings) ➤ Instrument settings ➤ Instrument access.

2. Tap Generate code.
 The instrument displays a new access code.

3. (Optional) Set the Visible to all users slider.

4. Tap Close.

 In the external software that is being used to connect to the instrument, enter the new remote access key to add the instrument.

Configure maintenance and service settings

Request technical support with Smart Help

Request technical support with Smart Help for any technical problem with the instrument. A Connect profile is required.

1. In the home screen, tap (Settings) ➤ Maintenance and service ➤ Smart Help.
 The Smart Help screen is displayed.

2. Tap Technical support ➤ Describe issue.

3. Tap Edit.

4. Enter a description in the Description field.
5. Fill out the Email field and the Phone field.

6. Select a country from the dropdown list.

7. Select a preferred contact method from the dropdown list.

8. *(Optional)* Select the Include instrument log file checkbox. The log file is not required but it is recommended for troubleshooting.

9. *(Optional)* Tap Attach files, select the log files from the list, then tap Attach files.

10. Tap Done.

A confirmation email is sent. It is sent even if email was not selected as the preferred contact method.

Request instrument service with Smart Help

Request instrument service with Smart Help for any instrument service request. A Connect profile is required.

1. In the home screen, tap ☰ (Settings) › Maintenance and service › Smart Help.
 The Smart Help screen is displayed.

2. Tap Instrument service › Describe issue.

3. Tap Edit.

4. Enter a description in the Description field.

5. Fill out the Email field and the Phone field.

6. Select a country from the dropdown list.

7. Select a preferred contact method from the dropdown list.

8. *(Optional)* Select the Include instrument log file checkbox. The log file is not required but it is recommended for troubleshooting.

9. *(Optional)* Tap Attach files, select the log files from the list, then tap Attach files.

10. Tap Done.

A confirmation email is sent. It is sent even if email was not selected as the preferred contact method.
Perform a self-verification test

The self verification test checks the instrument hardware functions.

There will be elevated noise levels while the fans are tested.

Ensure that there is no obstruction at the front of the instrument. The instrument drawer opens and closes as part of the test.

1. In the home screen, tap (Settings) › Maintenance and service › Self verification test.
 The Self Verification Test screen is displayed.

2. Tap Start test.
 The test takes approximately 10 minutes.
 The Self-Verification Test screen is displayed when the self-verification test is complete. The Self-Verification Test screen displays the functions that pass and fail.

3. (Optional) Tap Export to export the results.

4. Tap Close.

Use Smart Help if any hardware functions fail (see “Request technical support with Smart Help” on page 159).

View the last self-verification test result

The self verification test checks the instrument hardware functions. You can view the results of the last self-verification test that was run.

1. In the home screen, tap (Settings) › Maintenance and service › Self verification test.
 The Self-Verification Test screen is displayed.

2. Tap Last test.
 The Self-Verification Test screen displays the functions that pass and fail.

Use Smart Help if any hardware functions fail (see “Request technical support with Smart Help” on page 159).

View the instrument log

1. In the home screen, tap (Settings) › Maintenance and service › Instrument log.
 The Instrument Log screen lists the instrument event types with a time stamp.
• Run
• Change Block
• Error
• Power

• Calibration
• Self-Test
• Update
• User

2. *(Optional)* Tap any of the table headings to sort by that parameter.

3. *(Optional)* Tap an instrument event type in the left pane to filter the list that is displayed by that event type.

4. Tap Cancel.

Export the instrument log

1. In the home screen, tap ☰️ *(Settings)* › Maintenance and service › Instrument log.

2. *(Optional)* Tap a type of instrument event to export the log for only that type of event.
 If an instrument event is not selected, the logs for all the instrument events will be exported.

3. Tap Export.

4. Select a destination to save the instrument log files.
 • ☰️ Connect
 • ☙ Network Drive
 • ☀️ USB Drive

 Note: You must be signed in with a Connect profile in order to export the instrument log to Connect.

5. Tap Done.

View the instrument statistics

1. In the home screen, tap ☰️ *(Settings)* › Maintenance and service › Instrument statistics.

 The **Instrument Statistics** screen is displayed.
The following items can be monitored remotely:

- The progress of a run
- Instrument events
- Instrument statistics

1. In the home screen, tap (Settings) ➔ Maintenance and service ➔ Connect services.
2. Set the slider to the On or Off position.
3. Tap Done.

Update the software

Software updates are displayed on the Notifications button in the Settings screen when they are available.

![Notifications](image)

Notifications, including software updates

To enable notifications to be displayed on the home screen, see “Enable and disable home screen notifications” on page 168.

1. In the home screen, tap (Settings) ➔ Maintenance and service ➔ Software update. The Software Update screen is displayed. It indicates whether a software update is available.
2. Tap Update now. The software will update.

The Software Update screen will display Update is complete when the software update is complete. The instrument will restart.

The software can be repaired if the update failed (see “Repair the software” on page 164).
Repair the software

If a software update failed, the software can be repaired.

The software version installed during a repair is the same version that was previously installed on the instrument, even if a newer version is available.

Instrument settings, calibrations, profiles, and data files are preserved during a repair.

If the software update failed, the Software Update screen displays **Failed to upgrade**.

In the **Software Update** screen, tap **Repair**.

Back up the instrument

The instrument can be backed up to a USB drive or to Connect.

A back-up of the instrument can only be performed by an administrator.

IMPORTANT! A back-up of the instrument includes instrument profiles and settings. It does not include plate files or data files. Plate files and data files must be transferred separately. See Chapter 6, “View and manage files”.

1. In the home screen, tap ☰ *(Settings) › Maintenance and service › Back up/Restore › Back up instrument.*
 The **Back Up/Restore** screen is displayed.
2. Select a location to store the backup of the instrument.
 • ☰ **USB Drive**
 • ☰ **Connect**
3. *(Optional)* If you are backing up the instrument to a USB drive, insert a USB drive into the USB port on the front of the instrument.
4. Enter a backup file name.

5. Select the elements to back up.
 - Instrument settings
 - User profiles
 - Calibration records

6. Tap Back up.
 Instrument back up is complete is displayed on the Back Up Instrument screen when the back up is complete.

7. Tap Done.

Restore a backup of the instrument

IMPORTANT! A back-up of the instrument includes instrument profiles and settings. It does not include plate files or data files. Plate files and data files must be transferred separately. See Chapter 6, “View and manage files”.

Restoring a backup of the instrument can only be performed by an administrator.

System templates are included when a backup of the instrument is restored.

1. In the home screen, tap (Settings) Maintenance and service Backup/Restore Restore a backup.
 The Restore a Backup screen is displayed.

2. Select the backup to restore.

3. Tap Restore.
 Your instrument has been restored is displayed on the Restore a Backup screen.

4. Tap Done.

Overview of an instrument reset (restore factory default)

IMPORTANT! Back up the instrument before resetting the instrument (see “Back up the instrument” on page 164). Transfer plate files and data files (see Chapter 6, “View and manage files”). Plate files and data files are not included in a backup of the instrument.

Resetting the instrument deletes the following information:
- Instrument profiles
- User-created plate files and data files
- Custom dyes
- Custom melt calibrations

The following information is retained if the instrument is reset:
Reset the instrument (restore factory default)

IMPORTANT! Back up the instrument before resetting the instrument (see “Back up the instrument” on page 164). Plate files and data files are not backed up. Transfer plate files and data files (see Chapter 6, “View and manage files”).

For a description of the information that is deleted and the information that is retained during an instrument reset, see “Overview of an instrument reset (restore factory default)” on page 165.

1. In the home screen, tap (Settings) › Maintenance and service › Restore factory default.
2. Restart the instrument when prompted.

Configure the instrument for the hands-free features

The administrator must be signed in with a Connect profile in order to enable voice commands.

1. In the home screen, tap (Settings) › Hands-free operation.
2. Set the sliders to the Off position or the On position.
 - Enable facial authentication
 - Enable voice command
3. Tap Done.

Manage the run history

- To view the run history, see “View the list of data files on the instrument” on page 77.
- To export the run history, see “Transfer data files at a later time” on page 76.
- To delete the run history, see “Delete data files from the instrument” on page 77.
Manage the file name convention of the data file

1. In the home screen, tap (Settings) › File name convention. The Data File Naming Convention screen is displayed.

2. Tap Attributes. The list of available attributes for the data file name is displayed.

3. Select any of the following attributes to add to the data file name format, then tap Done.
 - Plate file name (default)
 - Time stamp (default)
 - User name
 - Barcode
 - Custom text

4. Tap the lines beside an attribute, then drag the attribute above or below the other attributes in the table.

 ![Location to tap and drag an attribute](image)

 The order of the attributes in the table is the order that they will appear in the data file name.

5. Tap Done.

View the notifications

1. In the home screen, tap (Settings) › Notifications. The Notifications screen is displayed. It lists the notification and the date and the time that it was received.

2. Tap Close.
Enable and disable home screen notifications

When home screen notifications are enabled, the number of notifications appears on the Settings button.

1. In the home screen, tap (Settings) ▸ Notifications. The Notifications screen is displayed.
2. Set the slider to the On or the Off position.
3. Tap Close.

Set up email notifications

Email notifications are only available when a user is signed in with a Connect account. The emails notifications will be sent to the email address associated with the Connect account.

1. In the home screen, tap (Settings) ▸ Email notifications. Note: If a user is not signed in with a Connect account, the Email notifications button will not be displayed.
2. Select the event type.
 - Run started
 - PCR cycling started
 - Run paused
 - Run stopped
 - Run is about to end
 - Run is complete
 - Instrument error

 Note: Deselect all of the event types in order to not receive email notifications.
3. Tap Done.
Clear the notifications

1. In the home screen, tap (Settings) > Notifications. The Notifications screen is displayed.

2. Clear the notifications.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear a single notification</td>
<td>Tap a single notification in the table, then tap Clear.</td>
</tr>
<tr>
<td>Clear all the notifications</td>
<td>Tap Clear all.</td>
</tr>
</tbody>
</table>

3. Tap Close to return to the Settings screen.
Instrument specifications and layout

- Instrument dimensions .. 170
- Electrical requirements .. 173
- Environmental requirements .. 174

Instrument dimensions

The instrument, including a block, has a total weight of 35.85 kg.

1 Height: 54.7 cm
2 Width: 33.7 cm
Instrument and computer clearances

During instrument installation and maintenance, it is necessary to access the back of the instrument. If the back of the instrument faces a wall, ensure that there is sufficient clearance on the bench to rotate the instrument for access.

IMPORTANT! For safety, the power outlet for the instrument must be accessible.

<table>
<thead>
<tr>
<th>Component</th>
<th>Top</th>
<th>Front</th>
<th>Sides</th>
<th>Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>30.5 cm (12 in.)</td>
<td>30.5 cm (12 in.)</td>
<td>—</td>
<td>15.25 cm (6 in.)</td>
</tr>
<tr>
<td>Computer[1]</td>
<td>—</td>
<td>15.25 cm (6 in.)</td>
<td>—</td>
<td>15.25 cm (6 in.)</td>
</tr>
</tbody>
</table>

[1] Co-locating the computer with the instrument is optional.
Configured system dimensions

Allow space for the configured instrument.

It is not a requirement to locate the computer next to the instrument. The clearances for the instrument shown in the figures also apply to an instrument without a computer.

1. Top clearance for the instrument: 30.5 cm
2. Width of system: 185 cm
3. Back clearance for the computer: 15.25 cm
4. Back clearance for the instrument: 15.25 cm
5. Front clearance for the instrument: 30.5 cm
6. Front clearance for the computer: 15.25 cm
Light guidelines

Use the following guidelines to ensure that there is proper lighting for facial authentication.

- Avoid direct light above or behind the user.
- Place the instrument in a position that minimizes backlight.
- For optimal results, place the instrument between two ceiling lights.

Electrical requirements

CAUTION! Do not unpack or plug in any components until they are configured for the proper operating voltage by the service representative.

WARNING! For safety, the power outlet for the instrument must be accessible at all times. See “Instrument dimensions” on page 170 for information about the space needed between the wall and the instrument. In case of emergency, you must be able to immediately disconnect the main power supply to all the equipment. Allow adequate space between the wall and the equipment so that the power cords can be disconnected in case of emergency.

- Electric receptacle required: Grounding capability required
- Maximum power dissipation: ~417 VA, 371 W (not including computer and monitor)
- Mains AC line voltage tolerances must be up to ±10 percent of nominal voltage

<table>
<thead>
<tr>
<th>Device</th>
<th>Rated voltage</th>
<th>Circuit required</th>
<th>Rated frequency</th>
<th>Rated power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>100–240 ±10% VAC(^1)</td>
<td>10 A</td>
<td>50/60 Hz</td>
<td>960 W</td>
</tr>
<tr>
<td>Computer (desktop)</td>
<td>100–240 ± 10% VAC</td>
<td>10 A</td>
<td>50/60 Hz</td>
<td>125 VA</td>
</tr>
<tr>
<td>Monitor</td>
<td>100–240 ± 10% VAC</td>
<td>10 A</td>
<td>50/60 Hz</td>
<td>65 VA</td>
</tr>
<tr>
<td>Computer (laptop)</td>
<td>100–240 ± 10% VAC</td>
<td>10 A</td>
<td>50/60 Hz</td>
<td>90 VA</td>
</tr>
</tbody>
</table>

\(^1\) If the supplied power fluctuates beyond the rated voltage, a power line regulator may be required. High or low voltages can adversely affect the electronic components of the instrument.
Environmental requirements

<table>
<thead>
<tr>
<th>Condition</th>
<th>Acceptable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation site</td>
<td>Indoor use only</td>
</tr>
<tr>
<td>Electromagnetic interference</td>
<td>Do not use this device in close proximity to sources of strong electromagnetic radiation (for example, unshielded intentional RF sources). Strong electromagnetic radiation may interfere with the proper operation of the device. This equipment has been designed and tested to CISPR 11 Class A. In a domestic environment it may cause radio interference. You may need to take measures to mitigate the interference.</td>
</tr>
<tr>
<td>Altitude</td>
<td>Located between sea level and 2000 m (6500 ft.) above sea level</td>
</tr>
<tr>
<td>Humidity (instrument and computer)</td>
<td>Operation: 15%–80% (noncondensing)</td>
</tr>
</tbody>
</table>
| Temperature (instrument and computer) | 15°C to 30°C (60°F to 85°F)
Note: The room temperature must not fluctuate more than 2°C over a 2-hour period. |
| Transient category | Installation categories II |
| Overvoltage category | Installation categories II |
| Vibration | The instrument is not adjacent to strong vibration sources, such as a centrifuge, pump, or compressor. Excessive vibration will affect instrument performance. |
| Pollution degree | II
Install the instrument in an environment that has nonconductive pollutants such as dust particles or wood chips. Typical environments with a Pollution Degree II rating are laboratories and sales and commercial areas. |
| Liquid waste collection | Dispose of the polymer, buffer, reagents and any liquid waste as hazardous waste in compliance with local and national regulations. |
| Other conditions | Ensure the room is away from any vents that could expel particulate material on the components.
Avoid placing the instrument and computer adjacent to heaters, cooling ducts, or in direct sunlight. |
Connect the computer to the instrument directly or to a LAN

This section describes direct wired connection of the computer provided by Thermo Fisher Scientific to the instrument or to a LAN.

Do not connect a customer-provided computer to the instrument.

1. Connect an Ethernet cable from the instrument or a LAN to the computer.

2. Power on the computer, then log in using a Windows™ Administrator account.

4. Right-click Local Area Connection, then select Properties.

6. Set the Internet Protocol (TCP/IP) Properties for either DHCP or Static IP communication:

<table>
<thead>
<tr>
<th>Network configuration</th>
<th>Action</th>
</tr>
</thead>
</table>
| DHCP | 1. Select Obtain an IP address automatically.
2. Set the DNS address. If the computer obtains DNS addresses:
 • Automatically – Select Obtain DNS server address automatically.
 • Statically – Select Use the following DNS address, then enter the address of the preferred and alternate DNS servers (if available). |
| Static IP | 1. Select Use the following IP address.
2. In the IP Address field, enter the static IP address.
3. If necessary, enter a subnet mask.
4. If necessary, enter a static gateway address in the Default Gateway field. |

7. If your network requires advanced TCP/IP setup (such as WINS), define the settings:
 a. Click Advanced in the Internet Protocol (TCP/IP) Properties dialog box.
 b. Define the IP Settings, DNS, and WINS tabs as instructed by your systems administrator, then click OK.

8. Close all dialog boxes by clicking OK, then re-start the computer.
The computer is now visible to other computers on the network.

Connect the instrument to a wired network

1. In the home screen, tap (Settings) ➤ Instrument settings ➤ Network configuration.
The Network Connections screen is displayed.

2. Tap Edit.

3. Tap one of the active fields found under the Wired option.
4. Select a wired network connection:

<table>
<thead>
<tr>
<th>Wired network connection</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>No further action is required.</td>
</tr>
</tbody>
</table>
| Static IP | 1. In the IP Address field, enter the static IP address.
| | 2. If necessary, enter a subnet mask.
| | 3. If necessary, enter a static gateway address in the Default Gateway field. |

5. Tap Done.
The Network Connections screen is displayed. The Status and IP Address fields under the Wired option have the information from the selected wired network.

6. Tap Done.
This instrument is now connected to the selected wired network.

Connect the instrument to a wireless network

1. In the home screen, tap (Settings) › Instrument settings › Network configuration.
The Network Connections screen is displayed.

2. Tap Edit.

3. Tap one of the active fields found under the Wireless option.

4. Select a wireless network to connect to the instrument.

5. (Optional) Tap Refresh to prompt the instrument to search for available wireless networks.

6. Tap Done.
The Network Connections screen is displayed. The Status, Network, and IP Address fields under the Wireless option are filled with the information from the selected wireless network.

7. Tap Done.
This instrument is now connected to the selected wireless network.
Appendix B Connect the instrument to a network

Instrument and computer connections

Figure 22 Instrument back panel

1. USB ports
2. Wi-Fi dongle port
3. Ethernet port
4. RS-232 port (service use only)
5. ON/OFF switch
6. Power inlet receptacle
Figure 23 Instrument-to-computer connections (minitower configuration)

1. Detachable power supply cord compatible with local power supply receptacle.
2. Connection between the computer and the instrument.
3. Connection between the computer and the monitor, keyboard, and mouse.
4. Connection between the computer and the (optional) handheld barcode scanner.

Download and install the desktop software

Computer requirements for the desktop software

The desktop software can be installed on a customer-provided computer. The following list contains the minimum software requirements for a customer-provided computer.

- Operating system—Windows™ 10 (64-bit) or Macintosh™ OS 10.01
- Processor—Pentium® 4 processor or comparable
- Memory—4 GB RAM
- Hard drive—10 GB
- Monitor—1280 x 1024 resolution

Download the desktop software

1. Go to thermofisher.com/qpcrsoftware.
2. Select the link for the QuantStudio™ 6 Pro and 7 Pro Real-Time PCR Systems.
3. Download the software.
 The example files are embedded in the software.
Install the desktop software

If you ordered a computer supplied by Thermo Fisher Scientific, the Field Service Engineer will configure the computer and install the desktop software during system installation.

1. Use an administrator account to log in to the computer on which you are installing the desktop software.

2. Unzip the downloaded software.
 The example files are embedded in the software.

3. Double-click setup.exe.

4. Follow the InstallShield Wizard prompts to install the software.

5. Accept the License Agreement.

6. Select Typical as the setup preference, then click Next.

7. Click Finish.

Networking

IMPORTANT! This section provides general networking information. It does not provide adequate detail to integrate the instrument into all possible network architectures. Because a network may contain advanced features (such as a firewall or network domains), we recommend that you consult a network administrator before connecting the instrument to your laboratory network.

Supported options for instrument and computer connections

We support the following direct, networked (LAN–local area network), or Connect cloud-based platform configurations. Configurations other than those listed are not recommended. Select a configuration that meets the needs of your laboratory’s instrument, software, and workflow requirements.

Note: For detailed information about networking your instrument, see the QuantStudio™ 6 Pro and 7 Pro Real-Time PCR Systems IT Checklist (Pub. No. MAN0018160).

<table>
<thead>
<tr>
<th>Connect cloud-based platform connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Internet access and a computer with the Chrome™ web browser to access the Connect platform.</td>
</tr>
</tbody>
</table>
(continued)

Connect cloud-based platform connection

- Computer-to-Connect platform connection *(select an option)*:
 - Wired connection to the internet using an Ethernet cable *–or–*
 - Wireless connection to the internet

- Instrument-to-Connect platform connection *(select an option)*:
 - Wired connection to the network using an Ethernet cable *–or–*
 - Wireless connection to the network using the instrument Wi-Fi module

Local area network (LAN) connection

- A computer provided by Thermo Fisher Scientific with the QuantStudio™ Design and Analysis Desktop Software.
- The computer and instrument must be on the same subnet mask.

- Computer-to-LAN connection *(select an option)*:
 - Wired connection to the network using an Ethernet cable *–or–*
 - Wireless connection to the network

- Instrument-to-LAN connection *(select an option)*:
 - Wired connection to the network using an Ethernet cable *–or–*
 - Wireless connection to the network using the instrument Wi-Fi module

Direct connection

- A computer provided by Thermo Fisher Scientific with the QuantStudio™ Design and Analysis Desktop Software.

- Computer-to-instrument connection: Direct, wired connection between the computer and the instrument using an Ethernet cable.

IMPORTANT! A direct instrument-to-computer connection cannot be combined with the LAN or the Connect cloud-based platform configurations.
Control and monitor networked instruments

The following items apply when the instrument is connected to a network:

- Computers on the network that are running the desktop software can control the instrument. Networked instruments can be controlled by only one computer at a time.
- Instruments linked to the Connect cloud-based platform cannot be controlled remotely. The following functions can be performed:
 - Remotely access the Connect cloud-based platform to create plate files and analyze data files.
 - Send plate files to the instrument run queue, then start a run from the instrument.
 - Monitor a run in real-time from the Connect cloud-based platform.

Networking guidelines and best practices

- Consult a network administrator before connecting the instrument to a network.
- To enable the full functionality of the software, the computer requires a network connection.
- Open the firewall port for the instruments to be discovered. See “Firewall ports that must be open” on page 182.
- Observe the restrictions to mDNS and Autodiscovery.
 The instrument supports mDNS but only when the instrument and computer share a direct network connection and are within the same subnet. Network computers that are separated from the instrument by a router, hub, or another network device may not be able to access the instrument by its host name.
- Confirm the uniqueness of the instrument name.
 - The instrument name must be unique within the subnet. The desktop software can automatically discover instruments on the link-local network.
 - The instrument does not test the uniqueness of the instrument name within the subnet when it is set.

Firewall ports that must be open

<table>
<thead>
<tr>
<th>Ports</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>80/443</td>
<td>Standard ports for instrument-to-Connect platform and computer-to-Connect platform connections</td>
</tr>
<tr>
<td>mDNS, 7443</td>
<td>Instrument-to-computer connection</td>
</tr>
<tr>
<td>mDNS, 5353</td>
<td>Instrument discovery</td>
</tr>
</tbody>
</table>
Ethernet port overview

The Ethernet port of the instrument supports:

- Static IP network service with subnet mask, primary and secondary data network service (DNS), and default gateway settings, or dynamic host configuration protocol (DHCP) network service.
- mDNS/DNS for local domains.

 Note: Because mDNS is limited to direct network connections, an instrument configured for mDNS may not be visible to other nodes that are separated by a router, hub, or another network device.
- IPv4 linklocal (IPV4LL) in the RFC (also known as Automatic Private IP Addressing [APIPA] or Internet Protocol Automatic Configuration [IPAC]).

 Note: When an instrument is set for DHCP, APIPA is automatically enabled, and the instrument provides an IP address when no address is supplied by the DHCP server.

Third-party software

Before installing third-party software on the computer running the desktop software, confirm that the third-party software will not do the following:

- Restrict Ethernet communication.
- Interfere with instrument or computer operation.
Kits, consumables, accessories, and reagents

Unless otherwise indicated, all materials are available through thermofisher.com.

Store all calibration and RNase P plates at –20°C. All other items can be stored at 15–30°C. Use all materials by the expiration date on the packaging.

96-well 0.2 mL consumables

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Amount</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroAmp™ Optical 8-Cap Strips</td>
<td>300 strips</td>
<td>4323032</td>
</tr>
<tr>
<td>MicroAmp™ Optical 8-Tube Strip, 0.2 mL</td>
<td>125 strips</td>
<td>4316567</td>
</tr>
<tr>
<td>MicroAmp™ Optical Tube without Cap, 0.2 mL</td>
<td>2,000 tubes</td>
<td>N8010933</td>
</tr>
<tr>
<td>MicroAmp™ Optical 96-Well Reaction Plate with Barcode</td>
<td>20 plates</td>
<td>4306737</td>
</tr>
<tr>
<td>MicroAmp™ Optical 96-Well Reaction Plate with Barcode</td>
<td>500 plates</td>
<td>4326659</td>
</tr>
<tr>
<td>MicroAmp™ EnduraPlate™ Optical 96-Well Clear GPLE Reaction Plates with Barcode</td>
<td>20 plates</td>
<td>4483348</td>
</tr>
<tr>
<td>MicroAmp™ EnduraPlate™ Optical 96-Well Clear GPLE Reaction Plates with Barcode</td>
<td>500 plates</td>
<td>4483351</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument verification or calibration plate</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan™ RNase P Instrument Verification Plate, 96-Well 0.2-mL</td>
<td>4432382</td>
</tr>
<tr>
<td>Region of Interest (ROI) and Background Plates, 96-Well 0.2-mL (2 plates)</td>
<td>4432364</td>
</tr>
<tr>
<td>QuantStudio™ 3/5 10-Dye Spectral Calibration Kit, 96-Well 0.2-mL (contains all 3 spectral calibration plates listed below)</td>
<td>A26343</td>
</tr>
<tr>
<td>QuantStudio™ 3/5 Spectral Calibration Plate 1 (FAM™, VIC™, ROX™, and SYBR™ dyes), 96-Well 0.2-mL</td>
<td>A26331</td>
</tr>
<tr>
<td>QuantStudio™ 3/5 Spectral Calibration Plate 2, 96-Well 0.2-mL (ABY™, JUN™, and MUSTANG PURPLE™ dyes)</td>
<td>A26332</td>
</tr>
<tr>
<td>QuantStudio™ 3/5 Spectral Calibration Plate 3, 96-Well 0.2-mL (TAMRA™, NED™, and Cy®5 dyes)</td>
<td>A26333</td>
</tr>
</tbody>
</table>
384-well consumables

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Contents</th>
<th>Cat. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroAmp™ Optical 384-Well Reaction Plate with Barcode</td>
<td>50 plates</td>
<td>4309849</td>
</tr>
<tr>
<td></td>
<td>500 plates</td>
<td>4326270</td>
</tr>
<tr>
<td></td>
<td>1000 plates</td>
<td>4343814</td>
</tr>
<tr>
<td>MicroAmp™ EnduraPlate™ Optical 384-Well Reaction Plate with Barcode (clear)</td>
<td>20 plates</td>
<td>4483285</td>
</tr>
<tr>
<td></td>
<td>500 plates</td>
<td>4483273</td>
</tr>
<tr>
<td>MicroAmp™ Optical Adhesive Film Kit</td>
<td>1 kit</td>
<td>4313663</td>
</tr>
</tbody>
</table>

Calibration or instrument verification plate

<table>
<thead>
<tr>
<th>Calibration or instrument verification plate</th>
<th>Cat. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan™ RNase P Instrument Verification Plate, 384-well</td>
<td>4455280</td>
</tr>
<tr>
<td>Region of Interest (ROI) and Background Plates, 384-well</td>
<td>4432320</td>
</tr>
<tr>
<td>QuantStudio™ 5 10-Dye Spectral Calibration Kit, 384-well</td>
<td>A26341</td>
</tr>
<tr>
<td>(contains the 2 spectral calibration plates listed below)</td>
<td></td>
</tr>
<tr>
<td>QuantStudio™ 5 Spectral Calibration Plate 1, (FAM™, VIC™, ROX™, TAMRA™, and SYBR™ dyes), 384-well</td>
<td>A26334</td>
</tr>
<tr>
<td>QuantStudio™ 5 Spectral Calibration Plate 2 (ABY™, JUN™, MUSTANG PURPLE™, NED™, and Cy5 dyes), 384-well</td>
<td>A26335</td>
</tr>
</tbody>
</table>

96-well 0.1 mL consumables

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Contents</th>
<th>Cat. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroAmp™ Optical 8-Cap Strip</td>
<td>300 strips</td>
<td>4323032</td>
</tr>
<tr>
<td>MicroAmp™ Optical Fast 8-Tube Strip (0.1 mL)</td>
<td>125 strips</td>
<td>4358293</td>
</tr>
<tr>
<td>MicroAmp™ Optical Fast Tube with Cap (0.1 mL)</td>
<td>1000 tubes</td>
<td>4358297</td>
</tr>
<tr>
<td>MicroAmp™ 96-Well Tray (blue) (for 0.1 mL)</td>
<td>10 trays</td>
<td>4379983</td>
</tr>
<tr>
<td>MicroAmp™ Optical 96-Well Fast Reaction Plate (0.1 mL)</td>
<td>10 plates</td>
<td>4346907</td>
</tr>
<tr>
<td>MicroAmp™ EnduraPlate™ Optical 96-Well Fast Reaction Plate with Barcode (clear) (0.1 mL)</td>
<td>20 plates</td>
<td>4481194</td>
</tr>
<tr>
<td></td>
<td>500 plates</td>
<td>4483494</td>
</tr>
<tr>
<td>MicroAmp™ Optical Adhesive Film Kit</td>
<td>1 kit</td>
<td>4313663</td>
</tr>
</tbody>
</table>
Calibration or instrument verification plate

<table>
<thead>
<tr>
<th>Description</th>
<th>Cat. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-Well Fast Region of Interest (ROI) and Background Plates (2 plates)</td>
<td>4432426</td>
</tr>
<tr>
<td>QuantStudio™ 3 or 5 10-Dye Spectral Calibration Kit, 96-Well 0.1-mL</td>
<td>A26342</td>
</tr>
<tr>
<td>96-Well 0.1-mL Spectral Calibration Plate 1 (containing FAM™, VIC™, ROX™, and SYBR™ dyes)</td>
<td>A26336</td>
</tr>
<tr>
<td>96-Well 0.1-mL Spectral Calibration Plate 2 (containing ABY™, JUN™, and MUSTANG PURPLE™ dyes)</td>
<td>A26337</td>
</tr>
<tr>
<td>96-Well 0.1-mL Spectral Calibration Plate 3 (containing TAMRA™, NED™, and Cy5 dyes)</td>
<td>A26340</td>
</tr>
<tr>
<td>96Well Fast TaqMan™ RNase P Instrument Verification Plate</td>
<td>4351979</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroAmp™ 96-Well Tray/Retainer Set</td>
<td>10 trays</td>
<td>4381850</td>
</tr>
<tr>
<td>MicroAmp™ Multi Removal Tool</td>
<td>1 tool</td>
<td>4313950</td>
</tr>
<tr>
<td>MicroAmp™ Cap Installing Tool (handle style)</td>
<td>1 tool</td>
<td>4330015</td>
</tr>
<tr>
<td>MicroAmp™ Optical Adhesive Film</td>
<td>25 films</td>
<td>4360954</td>
</tr>
<tr>
<td></td>
<td>100 films</td>
<td>4311971</td>
</tr>
<tr>
<td>MicroAmp™ Adhesive Film Applicator</td>
<td>5 applicators</td>
<td>4333183</td>
</tr>
<tr>
<td>RT-PCR Grade Water</td>
<td>10 × 1.5 mL tubes</td>
<td>AM9935</td>
</tr>
<tr>
<td>Handheld Barcode Scanner</td>
<td>1 scanner</td>
<td>4488442</td>
</tr>
</tbody>
</table>
Symbols on this instrument

Symbols may be found on the instrument to warn against potential hazards or convey important safety information. In this document, the hazard symbol is used along with one of the following user attention words.

- **CAUTION!**—Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.
- **WARNING!**—Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.
- **DANGER!**—Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.
Standard safety symbols

<table>
<thead>
<tr>
<th>Symbol and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION! Risk of danger. Consult the manual for further safety information.</td>
</tr>
<tr>
<td>CAUTION! Risk of electrical shock.</td>
</tr>
<tr>
<td>CAUTION! Hot surface.</td>
</tr>
<tr>
<td>CAUTION! Potential biohazard.</td>
</tr>
<tr>
<td>CAUTION! Ultraviolet light.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbole et description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISE EN GARDE ! Risque de danger. Consulter le manuel pour d’autres renseignements de sécurité.</td>
</tr>
<tr>
<td>MISE EN GARDE ! Risque de choc électrique.</td>
</tr>
<tr>
<td>MISE EN GARDE ! Surface chaude.</td>
</tr>
<tr>
<td>MISE EN GARDE ! Danger biologique potentiel.</td>
</tr>
<tr>
<td>MISE EN GARDE ! Rayonnement ultraviolet.</td>
</tr>
</tbody>
</table>
Additional safety symbols

<table>
<thead>
<tr>
<th>Symbol and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION! Moving parts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbole et description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISE EN GARDE ! Parties mobiles.</td>
</tr>
</tbody>
</table>

Location of safety labels

The instrument contains warnings at the locations shown in the figures below.

![Figure 24 - Labels on the back of the instrument (QuantStudio™ 6 Pro Real-Time PCR System)]

1. Electrical rating label
2. RFID label
3. Safety label
Figure 25 Labels on the back of the instrument (QuantStudio™ 7 Pro Real-Time PCR System)

1. Electrical rating label
2. RFID label
3. Safety label

Figure 26 Labels on the drawer

1. Moving parts label
Appendix D Safety
Symbols on this instrument

Figure 27 Labels on the top of the block

1 Hot surface label

Figure 28 Labels on the bottom of the block
Figure 29 Labels on drawer and the installed block

1. Hot surface label
2. Moving parts label

Figure 30 Labels on the top of the heated cover

1. Hot surface label
Figure 31 Labels on the bottom of the heated cover

Control and connection symbols

<table>
<thead>
<tr>
<th>Symbols and descriptions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>On (Power)</td>
<td></td>
</tr>
<tr>
<td>Off (Power)</td>
<td></td>
</tr>
</tbody>
</table>

Conformity symbols

<table>
<thead>
<tr>
<th>Conformity mark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicates conformity with safety requirements for Canada and U.S.A.</td>
</tr>
<tr>
<td>Illustration</td>
<td>Indicates conformity with China RoHS requirements.</td>
</tr>
<tr>
<td>Illustration</td>
<td>Indicates conformity with European Union requirements.</td>
</tr>
<tr>
<td>Illustration</td>
<td>Indicates conformity with Australia/New Zealand standards for electromagnetic compatibility and radio frequency requirement.</td>
</tr>
</tbody>
</table>
Safety information for instruments not manufactured by Thermo Fisher Scientific

Some of the accessories provided as part of the instrument system are not designed or built by Thermo Fisher Scientific. Consult the manufacturer’s documentation for the information needed for the safe use of these products.

Instrument safety

General

CAUTION! Do not remove instrument protective covers. If you remove the protective instrument panels or disable interlock devices, you may be exposed to serious hazards including, but not limited to, severe electrical shock, laser exposure, crushing, or chemical exposure.

CAUTION! Solvents and Pressurized fluids. Wear eye protection when working with any pressurized fluids. Use caution when working with any polymeric tubing that is under pressure:

- Extinguish any nearby flames if you use flammable solvents.
- Do not use polymeric tubing that has been severely stressed or kinked.
- Do not use polymeric tubing with tetrahydrofuran or nitric and sulfuric acids.
- Be aware that methylene chloride and dimethyl sulfoxide cause polymeric tubing to swell and greatly reduce the rupture pressure of the tubing.
- Be aware that high solvent flow rates (~40mL/min) may cause a static charge to build up on the surface of the tubing and electrical sparks may result.
Physical injury

CAUTION! Moving and Lifting Injury. The instrument is to be moved and positioned only by the personnel or vendor specified in the applicable site preparation guide. Improper lifting can cause painful and permanent back injury.

Things to consider before lifting or moving the instrument or accessories:

- Depending on the weight, moving or lifting may require two or more persons.
- If you decide to lift or move the instrument after it has been installed, do not attempt to do so without the assistance of others, the use of appropriate moving equipment, and proper lifting techniques.
- Ensure you have a secure, comfortable grip on the instrument or accessory.
- Make sure that the path from where the object is to where it is being moved is clear of obstructions.
- Do not lift an object and twist your torso at the same time. Keep your spine in a good neutral position while lifting with your legs.
- Participants should coordinate lift and move intentions with each other before lifting and carrying.
- For smaller packages, rather than lifting the object from the packing box, carefully tilt the box on its side and hold it stationary while someone else slides the contents out of the box.

CAUTION! Moving Parts. Moving parts can crush, pinch and cut. Keep hands clear of moving parts while operating the instrument. Disconnect power before servicing.
Electrical safety

WARNING! Fuse Installation. Before installing the instrument, verify that the fuses are properly installed and the fuse voltage matches the supply voltage. Replace fuses only with the type and rating specified for the unit. Improper fuses can damage the instrument wiring system and cause a fire.

AVERTISSEMENT ! Installation des fusibles. Avant d’installer l’instrument, vérifier que les fusibles sont correctement insérés et que leur tension correspond à celle fournie par le circuit d’alimentation. Ne remplacer les fusibles que par des modèles du type et de la puissance spécifiés pour l’appareil. L’utilisation de fusibles inadaptés peut endommager le circuit électrique de l’instrument et provoquer un incendie.

WARNING! Ensure appropriate electrical supply. For safe operation of the instrument:

- Plug the system into a properly grounded receptacle with adequate current capacity.
- Ensure the electrical supply is of suitable voltage.
- Never operate the instrument with the ground disconnected. Grounding continuity is required for safe operation of the instrument.

AVERTISSEMENT ! Veiller à utiliser une alimentation électrique appropriée. Pour garantir le fonctionnement de l’instrument en toute sécurité :

- Brancher le système sur une prise électrique correctement mise à la terre et de puissance adéquate.
- S’assurer que la tension électrique est convenable.
- Ne jamais utiliser l’instrument alors que le dispositif de mise à la terre est déconnecté. La continuité de la mise à la terre est impérative pour le fonctionnement de l’instrument en toute sécurité.

WARNING! Power Supply Line Cords. Use properly configured and approved line cords for the power supply in your facility.

AVERTISSEMENT ! Cordons d'alimentation électrique. Utiliser des cordons d'alimentation adaptés et approuvés pour raccorder l’instrument au circuit électrique du site.

WARNING! Disconnecting Power. To fully disconnect power either detach or unplug the power cord, positioning the instrument such that the power cord is accessible.

AVERTISSEMENT ! Déconnecter l’alimentation. Pour déconnecter entièrement l’alimentation, détacher ou débrancher le cordon d’alimentation. Placer l’instrument de manière à ce que le cordon d’alimentation soit accessible.
Laser safety

WARNING! LASER HAZARD. The QuantStudio™ 6 Pro System and the QuantStudio™ 7 Pro System are compatible with an optional Handheld Barcode Scanner. Lasers can burn the retina, causing permanent blind spots. To ensure safe laser operation:

- Never look directly into the laser beam.
- Do not remove safety labels, instrument protective panels, or defeat safety interlocks.
- The system must be installed and maintained by a Thermo Fisher Scientific Technical Representative.
- Remove jewelry and other items that can reflect a laser beam into your eyes or those of others.
- Wear proper eye protection and post a laser warning sign at the entrance to the laboratory if the laser protection is defeated for servicing.
- DO NOT operate the laser when it cannot be cooled by its cooling fan; an overheated laser can cause severe burns on contact.

The following table lists laser safety symbols and alerts that may be present on the instrument.

<table>
<thead>
<tr>
<th>Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨 CAUTION! LASER HAZARD, Bar Code Scanner. The bar code scanner included with the instrument is a Class 2 laser. To avoid damage to eyes, do not stare directly into the beam or point into another person's eyes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨 MISE EN GARDE ! RISQUE LIÉ AU RAYONNEMENT LASER, Lecteur de code-barres. Le lecteur de code-barres inclut dans l'instrument est un appareil laser de classe 2. Pour éviter toute lésion oculaire, ne regardez pas directement le faisceau et ne le dirigez pas vers les yeux d'une autre personne.</td>
</tr>
</tbody>
</table>
Cleaning and decontamination

CAUTION! Cleaning and Decontamination. Use only the cleaning and decontamination methods that are specified in the manufacturer user documentation. It is the responsibility of the operator (or other responsible person) to ensure that the following requirements are met:

- No decontamination or cleaning agents are used that can react with parts of the equipment or with material that is contained in the equipment. Use of such agents could cause a HAZARD condition.
- The instrument is properly decontaminated a) if hazardous material is spilled onto or into the equipment, and/or b) before the instrument is serviced at your facility or is sent for repair, maintenance, trade-in, disposal, or termination of a loan. Request decontamination forms from customer service.
- Before using any cleaning or decontamination methods (except methods that are recommended by the manufacturer), confirm with the manufacturer that the proposed method will not damage the equipment.

MISE EN GARDE ! Nettoyage et décontamination. Utiliser uniquement les méthodes de nettoyage et de décontamination indiquées dans la documentation du fabricant destinée aux utilisateurs. L'opérateur (ou toute autre personne responsable) est tenu d'assurer le respect des exigences suivantes:

- Ne pas utiliser d’agents de nettoyage ou de décontamination susceptibles de réagir avec certaines parties de l’appareil ou avec les matières qu’il contient et de constituer, de ce fait, un DANGER.
- L’instrument doit être correctement décontaminé a) si des substances dangereuses sont renversées sur ou à l’intérieur de l’équipement, et/ou b) avant de le faire réviser sur site ou de l’envoyer à des fins de réparation, de maintenance, de revente, d’élimination ou à l’expiration d’une période de prêt (des informations sur les formes de décontamination peuvent être demandées auprès du Service clientèle).
- Avant d’utiliser une méthode de nettoyage ou de décontamination (autre que celles recommandées par le fabricant), les utilisateurs doivent vérifier auprès de celui-ci qu’elle ne risque pas d’endommager l’appareil.

Instrument component and accessory disposal

To minimize negative environmental impact from disposal of electronic waste, do not dispose of electronic waste in unsorted municipal waste. Follow local municipal waste ordinances for proper disposal provision and contact customer service for information about responsible disposal options.

Safety and electromagnetic compatibility (EMC) standards

The instrument design and manufacture complies with the following standards and requirements for safety and electromagnetic compatibility.
Safety standards

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61010-1</td>
<td>Safety requirements for electrical equipment for measurement, control, and laboratory use – Part 1: General requirements</td>
</tr>
<tr>
<td>EN 61010-1</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use – Part 1: General requirements</td>
</tr>
<tr>
<td>UL 61010-1</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use – Part 1: General requirements</td>
</tr>
<tr>
<td>CAN/CSA C22.2 No. 61010-1</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use – Part 1: General requirements</td>
</tr>
<tr>
<td>IEC 61010-2-010</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use – Part 2-010: Particular requirements for laboratory equipment for the heating of materials</td>
</tr>
<tr>
<td>EN 61010-2-010</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use – Part 2-010: Particular requirements for laboratory equipment for the heating of materials</td>
</tr>
<tr>
<td>IEC 61010-2-020</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use – Part 2-020: Particular requirements for laboratory centrifuges</td>
</tr>
<tr>
<td>EN 61010-2-020</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use – Part 2-020: Particular requirements for laboratory centrifuges</td>
</tr>
<tr>
<td>IEC 61010-2-081</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use – Part 2-081: Particular requirements for automatic and semi-automatic laboratory equipment for analysis and other purposes</td>
</tr>
<tr>
<td>EN 61010-2-081</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use – Part 2-081: Particular requirements for automatic and semi-automatic laboratory equipment for analysis and other purposes</td>
</tr>
</tbody>
</table>

EMC standards

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61326-1</td>
<td>Electrical Equipment for Measurement, Control and Laboratory Use – EMC Requirements – Part 1: General Requirements</td>
</tr>
<tr>
<td>AS/NZS CISPR 11</td>
<td>Limits and Methods of Measurement of Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical (ISM) Radiofrequency Equipment</td>
</tr>
<tr>
<td>ICES-003, Issue 6</td>
<td>Industrial, Scientific and Medical (ISM) Radio Frequency Generators</td>
</tr>
</tbody>
</table>
Environmental design standards

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ/T 11364-2014</td>
<td>“China RoHS” Standard—Marking for the Restricted Use of Hazardous Substances in Electronic and Electrical Products</td>
</tr>
</tbody>
</table>

Radio compliance standards

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hereby, Thermo Fisher Scientific declares that the radio equipment type:</td>
</tr>
<tr>
<td></td>
<td>QuantStudio™ 6 Pro Real-Time PCR System and QuantStudio™ 7 Pro Real-Time PCR System are in compliance with Radio Equipment Directive 2014/53/EU. The full text of the EU declaration of conformity is available at thermofisher.com.</td>
</tr>
<tr>
<td>FCC Part 15</td>
<td>Contains FCC ID: 2ADEZMRM102A</td>
</tr>
<tr>
<td></td>
<td>FCC Notice (for U.S. Customers):</td>
</tr>
<tr>
<td></td>
<td>This device complies with Part 15 of the FCC Rules:</td>
</tr>
<tr>
<td></td>
<td>Operation is subject to the following conditions:</td>
</tr>
<tr>
<td></td>
<td>1. This device may not cause harmful interference, and</td>
</tr>
<tr>
<td></td>
<td>2. This device must accept any interference received, including interference that may cause undesired operation.</td>
</tr>
<tr>
<td></td>
<td>Changes and modifications not expressly approved by Thermo Fisher Scientific can void your authority to operate this equipment under Federal Communications Commissions rules.</td>
</tr>
<tr>
<td></td>
<td>Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment and meets the 47 CFR 2.1091 of the FCC radio frequency (RF) Exposure rules.</td>
</tr>
</tbody>
</table>
Appendix D Safety

Safety and electromagnetic compatibility (EMC) standards

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
| ICES (Innovation, Science and Economic Development Canada) | This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada’s licence-exempt RSS(s). Operation is subject to the following two conditions:
1. This device may not cause interference.
2. This device must accept any interference, including interference that may cause undesired operation of the device. |
| IMDA (Infocomm Media Development Authority) (Singapore) | Complies with IMDA standards DA107256 |
| ANATEL (Agencia Nacional de Telecomunicacoes) (Brazil) | Módulo Modelo: ID ISC.MRM102-A
06094-19-08681
Este equipamento não tem direito à proteção contra interferência prejudicial e não pode causar interferência em sistemas devidamente autorizados. |
| KCC (Korea Communications Commission) (Korea) | 이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서 가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다. |
| MIC (Ministry of Internal Affairs and Communications) (Japan) | This product includes approved RFID module with MIC approval number AC-19073. |
| NCC (National Communications Commission) (Taiwan) | 低功率電波輻射性電機管理辦法
第十二條經型式認證合格之低功率射頻電機，非經許可，公司、商號或使用者均不得擅自變更頻率、加大功率或變更原設計之特性及功能。
第十四條低功率射頻電機之使用不得影響飛航安全及干擾合法通信；經發現有干擾現象時，應立即停用，並改善至無干擾時方得繼續使用。
前項合法通信，指依電信規定作業之無線電信。低功率射頻電機須忍受合法通信或工業、科學及醫療用電波輻射性電機設備之干擾。 |
RF transceiver specifications

<table>
<thead>
<tr>
<th>RFID readers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ID ISC.MRM102-A RFID module with asynchronous RS232 interface</td>
</tr>
<tr>
<td>Frequency</td>
<td>13.56 MHz</td>
</tr>
<tr>
<td>Modulation</td>
<td>ASK</td>
</tr>
<tr>
<td>Transmit power</td>
<td>54.5 dBuV/m at 10m</td>
</tr>
<tr>
<td>Antenna</td>
<td>3674.000.00 (ID ISC. ANT40/30 HF PCB Antenna)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>40 mm x 30 mm (1.57 inches x 1.18 inches)</td>
</tr>
<tr>
<td>Antenna: 50 Ohm</td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>12 Vdc</td>
</tr>
</tbody>
</table>
WARNING! GENERAL CHEMICAL HANDLING. To minimize hazards, ensure laboratory personnel read and practice the general safety guidelines for chemical usage, storage, and waste provided below. Consult the relevant SDS for specific precautions and instructions:

- Read and understand the Safety Data Sheets (SDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. To obtain SDSs, see the "Documentation and Support" section in this document.
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing).
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with sufficient ventilation (for example, fume hood).
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer cleanup procedures as recommended in the SDS.
- Handle chemical wastes in a fume hood.
- Ensure use of primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- After emptying a waste container, seal it with the cap provided.
- Characterize (by analysis if needed) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure that the waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.
- IMPORTANT! Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

AVERTISSEMENT ! PRÉCAUTIONS GÉNÉRALES EN CAS DE MANIPULATION DE PRODUITS CHIMIQUES. Pour minimiser les risques, veiller à ce que le personnel du laboratoire lise attentivement et mette en œuvre les consignes de sécurité générales relatives à l'utilisation et au stockage des produits chimiques et à la gestion des déchets qui en découlent, décrites ci-dessous. Consulter également la FDS appropriée pour connaître les précautions et instructions particulières à respecter :

- Lire et comprendre les fiches de données de sécurité (FDS) fournies par le fabricant avant de stocker, de manipuler ou d’utiliser les matériaux dangereux ou les produits chimiques. Pour obtenir les FDS, se reporter à la section « Documentation et support » du présent document.
- Limiter les contacts avec les produits chimiques. Porter des équipements de protection appropriés lors de la manipulation des produits chimiques (par exemple : lunettes de sûreté, gants ou vêtements de protection).
Limit l’inhalation des produits chimiques. Ne pas laisser les récipients de produits chimiques ouverts. Ils ne doivent être utilisés qu’avec une ventilation adéquate (par exemple, sorbonne).

Vérifier régulièrement l’absence de fuite ou d’écoulement des produits chimiques. En cas de fuite ou d’écoulement d’un produit, respecter les directives de nettoyage du fabricant recommandées dans la FDS.

Manipuler les déchets chimiques dans une sorbonne.

Veiller à utiliser des récipients à déchets primaire et secondaire. (Le récipient primaire contient les déchets immédiats, le récipient secondaire contient les fuites et les écoulements du récipient primaire. Les deux récipients doivent être compatibles avec les matériaux mis au rebut et conformes aux exigences locales, nationales et communautaires en matière de confinement des récipients.)

Une fois le récipient à déchets vidé, il doit être refermé hermétiquement avec le couvercle fourni.

Caractériser (par une analyse si nécessaire) les déchets générés par les applications, les réactifs et les substrats particuliers utilisés dans le laboratoire.

Vérifier que les déchets sont convenablement stockés, transférés, transportés et éliminés en respectant toutes les réglementations locales, nationales et/ou communautaires en vigueur.

IMPORTANT ! Les matériaux représentant un danger biologique ou radioactif exigent parfois une manipulation spéciale, et des limitations peuvent s’appliquer à leur élimination.

WARNING! **HAZARDOUS WASTE (from instruments).** Waste produced by the instrument is potentially hazardous. Follow the guidelines noted in the preceding General Chemical Handling warning.

WARNING! **4L Reagent and Waste Bottle Safety.** Four-liter reagent and waste bottles can crack and leak. Each 4-liter bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position.
Biological hazard safety

WARNING! Potential Biohazard. Depending on the samples used on this instrument, the surface may be considered a biohazard. Use appropriate decontamination methods when working with biohazards.

WARNING! BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Conduct all work in properly equipped facilities with the appropriate safety equipment (for example, physical containment devices). Safety equipment can also include items for personal protection, such as gloves, coats, gowns, shoe covers, boots, respirators, face shields, safety glasses, or goggles. Individuals should be trained according to applicable regulatory and company/institution requirements before working with potentially biohazardous materials. Follow all applicable local, state/provincial, and/or national regulations. The following references provide general guidelines when handling biological samples in laboratory environment.

Documentation and support

Related documentation

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QuantStudio™ 6 Pro and 7 Pro Real-Time PCR Systems Hands-Free Features Quick Reference</td>
<td>MAN0018430</td>
</tr>
<tr>
<td>TaqMan™ Array Plates with RFID for use with QuantStudio™ 6 Pro and 7 Pro Real-Time PCR Systems Quick Reference Guide</td>
<td>MAN0018436</td>
</tr>
<tr>
<td>QuantStudio™ 6 Pro and 7 Pro Real-Time PCR Systems Connectivity Quick Reference</td>
<td>MAN0018431</td>
</tr>
<tr>
<td>QuantStudio™ 6 Pro and 7 Pro Real-Time PCR Systems Site Preparation Guide</td>
<td>MAN0017992</td>
</tr>
<tr>
<td>Desktop software</td>
<td></td>
</tr>
<tr>
<td>QuantStudio™ Design and Analysis Software v2 User Guide</td>
<td>MAN0018200</td>
</tr>
<tr>
<td>QuantStudio™ Design and Analysis Software v2 Standard Curve Analysis Module User Guide</td>
<td>MAN0018746</td>
</tr>
<tr>
<td>QuantStudio™ Design and Analysis Software v2 Relative Quantification Analysis Module User Guide</td>
<td>MAN0018747</td>
</tr>
<tr>
<td>QuantStudio™ Design and Analysis Software v2 Presence Absence Analysis Module User Guide</td>
<td>MAN0018748</td>
</tr>
<tr>
<td>QuantStudio™ Design and Analysis Software v2 Genotyping Analysis Module User Guide</td>
<td>MAN0018749</td>
</tr>
<tr>
<td>QuantStudio™ Design and Analysis Software v2 High Resolution Melt Analysis Module User Guide</td>
<td>MAN0018981</td>
</tr>
<tr>
<td>Connect cloud-based platform</td>
<td></td>
</tr>
<tr>
<td>QuantStudio™ Design and Analysis v2 User Guide</td>
<td>MAN0018202</td>
</tr>
<tr>
<td>Security, Auditing, and E-signature (SAE) v2.0 module</td>
<td></td>
</tr>
<tr>
<td>SAE Administrator Console v2.0 User Guide</td>
<td>MAN0017468</td>
</tr>
<tr>
<td>About the Assay Information File</td>
<td></td>
</tr>
<tr>
<td>Understanding Your Shipment</td>
<td>MAN0017153</td>
</tr>
</tbody>
</table>
Customer and technical support

Visit thermofisher.com/support for the latest service and support information.
- Worldwide contact telephone numbers
- Product support information
 - Product FAQs
 - Software, patches, and updates
 - Training for many applications and instruments
- Order and web support
- Product documentation
 - User guides, manuals, and protocols
 - Certificates of Analysis
 - Safety Data Sheets (SDSs; also known as MSDSs)

Note: For SDSs for reagents and chemicals from other manufacturers, contact the manufacturer.

Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies’ General Terms and Conditions of Sale at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have any questions, please contact Life Technologies at www.thermofisher.com/support.
Index

A
accessories 186
Add assay 62
Add data collection location 56
Add facial authentication 118
Add pause 59
Add PCR stage 56
Add PCR step 56
Add profile 120
Add reagent details 63
Add target 62
Adjust speaker volume 156
Administrator privilege
 Disable 120
 Enable 120
Administrator profile, Create 117
Apply reagents 63
Assay
 Add 62
 Edit 62
audit reason, specify 138
Auto Delta
 Remove 58
 Set up 58
Auto export setting
 Delete 53
 Import 53
AutoDelta, Overview 18
Automatic disk storage management 158
Automatic sign-out
 Edit 158
 Enable 158

B
Back up instrument 164
background calibration
 create plate 90
 plate, prepare 85
Background calibration
 Description 81
 Frequency 82
 Reminders 82
 Run 86

Status 81
 When to perform 80
Barcode scan 50
biohazard safety 205
Block
 Change 144
 Clean 147
 Remove 145
Block calibration 79

calibration, plate, prepare 85
Calibration
 Background 86
 Custom dye
 Dilution guidelines 98
 Optimal concentration 100
 Perform 102
 Prepare plate 101
 Run dilution plate 100
 Workflow 98
 Custom dye dilution, Prepare dilution plate 99
 Custom melt curve 104
 Descriptions 81
 Dye 86
 Export report 83
 Frequency 82
 Reminders, Connect 82
 Required materials 84
 ROI/Uniformity 86
 Schedule 80
 Status 81
 Transfer data files 89
 Transfer results 89
 View images 87
 Workflow 84
 calibration failure, troubleshoot 89
 Calibration plates 84
 Cancel scheduled run 71
 Change block 144
 Change password
 SAE, Change password 136
 Change PIN 118, 119
 Clean block 147
Clear notifications 169
Cloud 25
Comparative Ct run 31
Comparison 15
comeputer
 connection to instrument or LAN 180
 connections 178
 requirements for desktop software 179
 set up 175
Configure hands-free features 166
Configure network 156
Configure ramp rates 59
conformity symbols 193
Connect
 Calibration reminders 82
 Link 116
 Link to instrument 111
 Roles
 Administrator 109
 Standard 109
 Unlink from instrument 114
Connect a proxy server 157
Connect platform
 Features 25
 Privacy policy 154
Connect platform connection 30
Connect platform region 157
Connect profile
 Edit 119
 Overview 108
connect SAE server 131
Connections
 Options 30
 Wired 30
 Wireless 30
consumables
 384-well 185
 96-well 0.1-mL 185
 96-well 0.2-mL 184
contamination, identify 90
control and connection symbols 193
Copy plate file 72
Cover temperature 55
Create and run a plate 46
Custom dye, Add to instrument 102
Custom dye calibration
 Dilution, Guidelines 98
 Dilution plate
 Prepare plate 99
 Run 100
 Optimal concentration 100
 Perform 102
 Prepare plate 101
 Workflow 98
Custom dyes, Overview 98
Custom melt curve, Calibrate 104
Cycles 55

D
Data
 View during run 68
 Zoom 69
Data collection 17
Data collection location
 Add 56
 Remove 56
Data file
 Delete 77
 Transfer 76
Data file name, Manage 167
Date
 Format 155
 Set 155
Delete auto export setting 53
Delete data file 77
Delete plate file 73
Delete profile 121
Delete reagent details 63
desktop software
download 179
download and install 179
install 180
desktop software, Features 25
direct network connection 30
Disable administrator privilege 120
Disable demonstration mode 155
Disable email notifications 168
Disable home screen notifications 168
Disable remote monitoring 163
Disable SAE 132
Disk storage management 158
documentation, related 206
download desktop software 179
dye
 Custom, Add 102
 Edit 64
 Passive reference 64
dye calibration, plate, prepare 85
dye calibration
 Description 81
 Frequency 82
 Reminders 82
 Run 86
 Status 81
 When to perform 80
dyes
 Custom 16, 98
E
Edit automatic sign-out 158
Edit guest access 107
Edit method 55-59
Edit passive reference dye 64
Edit plate file 66
Edit plate file during run 66
Edit plate layout 62
Edit profile 118, 119
Edit reagent details 63
Edit reagents 63
Edit sleep mode 150
Email notifications 168
Enable administrator privilege 120
Enable automatic sign-out 158
Enable demonstration mode 155
Enable email notifications 168
Enable home screen notifications 168
Enable remote monitoring 163
Enable sleep mode 150
Ethernet port 183
EULA, View 154
Export calibration report 83
Export instrument log 162

F
Facial authentication
 Edit 118
 Indicators 22
 Overview 21
 Set up 117
 Sign in 43
Features 15
File locations 26
File name convention, Data file 167
File names, System templates 33, 34, 36
Files
 Description 29
 Features 27
firewall ports 182
fluorescence high
Functions, SAE 124, 125
Fuses
 Replace, Materials required 149

G
Genotyping run 32
Guest access
 Edit 107

H
Hands-free, Configure 166
Hands-free features
 Facial authentication 21
 Indicators 22
 Voice activation 21
Home screen, Parts of 23
Home screen notifications 168

I
Import auto export setting 53
Import sample setup 53
Index Term 198
install, desktop software 180
Install block 143
installation, desktop software 179
instrument, connections 178
Instrument
 About 153
 Back up 164
 Edit name 155
 Features 14
 Guest access 41
 Log 161, 162
 Move 152
 Notifications, View 167
 Overview 14
 Parts of 19
 Power off 151
 Power on 42, 151
 Reset, Overview 165
 Restore backup 165
 Restore factory default, Overview 165
 Schedule 70, 71
 Set date and time 155
 Ship 152
 Software features 25
 Statistics 162
 Store 152
 View details 153
 Workflow 38
Instrument calibration 79
Instrument comparison 15
Instrument features, SAE enabled 123
Instrument log
 Export 162
 View 161
 Instrument name 155
 Instrument profile
 Create 112
Edit 118
 Facial authentication 118
Instrument profiles, View all 119
Instrument service 160
instrument verification. See RNase P verification
Interchangeable block calibration 79

L
Light guidelines 173
limited product warranty 207
List view 60
Load plate 50
Local area network (LAN) connection 30
Local instrument profile
 Create 112
 Overview 108
Lock touchscreen, During run 69

M
maintenance 143
Manage reagents 63
Manual disk storage management 158
Melt curve run 32
Method
 Auto Delta
 Remove 58
 Set up 58
 Data collection location
 Add 56
 Remove 56
Definitions 55
Edit 55
Files 29
Pause
 Add 59
 Remove 59
Ramp rates 59
Stage
 Add 56
 Remove 56
Step
 Add 56
 Remove 56
VeriFlex Zone
 Remove 57
 Set up 57
View during run 68
Method elements 55
Method tab
 Actions, Edit method 55
Move instrument 152
My instrument 26

N
network
 configurations supported 180
 guidelines and best practices 182
network configuration and security 13
Network connections 30
Network drive 26
networking 180
No template control (NTC) 62
Notifications, Clear 169

O
Order to set up profiles 108

P
Pass criteria, RNase P verification 91, 93
Passive reference dye, Edit 64
Password, Change 118, 119
password security 13
Pause
 Add 59
 Remove 59
Pause run 67
PCR cycles 55, 56
PCR stage
 Add 56
 Remove 56
PCR stages 56
PCR step
 Add 56
 Remove 56
performance verification. See RNase P verification
PIN
 Change 118, 119
 Sign in 43
PIN reset 119
Plate
 Files 29
 Load 50
 Unload 51
Plate file
 Copy 72
 Create and run a plate 46
 Delete 73
 Layout 60
 Method 54
 Properties 53
 Repeat last run 48
Plate layout, Edit 62
Plate tab, Actions 62
Plate view 60
Plots
 View during run 68
 Zoom 69
Post-read 26
Power off instrument 151
Power on 42, 151
Power-saving options 156
Presence/absence run 32
Profile
 Add 120
 Administrator, Create 117
 Connect
 Link 111
 Unlink 114
 Create 112
 Delete 121
 Delete PIN 119
 Edit 118, 119
 Facial authentication 117, 118
 Reset PIN 119
 Sign out 45
Profiles
 Connect
 Administrator 109
 Standard 109
 Order to set up 108
 SAE 127
 Sign in 43
 View all 119
 Voice commands 44
Properties, Files 29
Properties of a plate file 53
Properties tab
 Actions 53
 Import sample setup 53
Proxy server 157
Public 26

R
Ramp rates, Configure 59
Reaction volume 55
Reagents
 Add 63
 Apply 63
 Delete 63
 Edit 63
Region, Connect platform 157
related documentation 206
Relative standard curve run 31
Remote monitoring 163
Remove Auto Delta 58
Remove block 145
Remove data collection location 56
Remove pause 59
Remove PCR stage 56
Remove PCR step 56
Remove VeriFlex Zones 57
Repair software 164
Repeat last run 48
Replace fuses, Materials required 149
Required materials, Calibration 84
Reset instrument 165, 166
Reset PIN 119
Restore backup 165
Restore factory default 165, 166
RNase P plates 91
RNase P verification
 Pass criteria 93
 Plate description 92
 Run 94
 When to perform 80
RNase P verification, plate, prepare 94
ROI/uniformity calibration
 Description 81
 Frequency 82
 plate, prepare 85
 Reminders 82
 Status 81
ROI/Uniformity calibration
 Run 86
 When to perform 80
Roles, SAE 125
Run
 Lock touchscreen 69
 Pause 67
 Post-PCR 17
 Real-time 17
 Stop 67
 Unlock touchscreen 70
Run data file name 46
Run queue 26
Run type
 Comparative Ct 17
 Genotyping 17
 Melt curve 17
 Presence/absence 17
 Relative standard curve 17
 Standard curve 17
Run types
 Comparative Ct 31
 Genotyping 32
 Melt curve 32
 Presence/absence 32
 Relative standard curve 31
 Standard curve 30
S

SAE

dialog boxes 126
disable 132
enable 131
Enable, Workflow 129
enable on instrument 130
Functions 124, 125
instrument features 123
overview 123
Profiles 127
Roles 125
server, specify 130
Workflow, Enable SAE 129
SAE server, connect 131
safety, biohazard 205
safety symbols 188, 189
sample block, decontaminate 146
Sample information 62
Sample setup, Import 53
Saved plate file, Create and run a plate 46
Schedule, Overview 70
Schedule run 70
Self-verification test, Results 161
Service, Request 160
Set up Auto Delta 58
Set up VeriFlex Zones 57
Ship instrument 152
Sign in 43
Sign out 45
Sign-in required 107
Sleep mode
 Edit 150
 Enable 150
Smart Help
 Instrument service 160
 Technical support 159
Software, Repair 164
Software features 25
Speaker volume, Adjust 156
Standard 62
Standard curve run 30
Standard profile 109
Statistics, View 162
Stop run 67
Storage space 158
Store instrument 152
support, customer and technical 207
symbols
 conformity 193
 control and connection 193
 safety 188, 189
system components, SAE enabled 127
System dyes 15
System template, Create and run a plate 46
System templates 33, 34, 36

T

Target
 Add 62
 Edit 62
Target/SNP 62
Technical support 159
Temperature 55
Template 26
terms and conditions 207
Thermal protocol 55
Thermo Fisher Cloud 25
Thermo Fisher Connect 25
third-party software 30, 183
Time
 Format 155
 Set 155
Time remaining, View during run 69
Transfer calibration data files 89
Transfer calibration results 89
Transfer data file
 Immediately after run 76
 Later time 76

U

uniformity calibration, plate, prepare 85
Uniformity calibration
 Description 81
 Frequency 82
 Reminders 82
 Status 81
Unknown 62
Unload plate 51
Unlock touchscreen, During run 70
USB drive 26

V

Verification
 Description 91
 Pass criteria 93
 RNase P 91
 Schedule 80
verification failure, troubleshoot 96
VeriFlex Zones
 Overview 17
 Remove 57
 Set up 57
View
List of data files 77
Plate layout 60
View all profiles 119
View audit records (SAE) 140
View calibration images 87
View data during run, Zoom 69
View EULA 154
View instrument details 153
View instrument log 161
View license agreement 154
View method during run 68
View notifications 167
View plots during run, Zoom 69
View privacy policy 154
View time remaining during run 69
Voice commands
 Indicators 22

Overview 21
Supported 44

W
warranty 207
Well
 Add assay 62
 Add target 62
 Assign 62
 Edit 62
Wells, View 60
Wired connection 30
Wireless connection 30
Workflow
 Calibration 84
 Custom dye calibration 98