Revision history: Pub. No. MAN0019567

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.0</td>
<td>16 September 2022</td>
<td>Adding network-drive saving, Operational Qualification (OQ) functionalities, and scatter plot functionality.</td>
</tr>
<tr>
<td>C.0</td>
<td>9 June 2021</td>
<td>Changing "Templates" functions to "Protocols". Adding additional settings in protocol editing/creation to include Setup, Calculators, and Save.</td>
</tr>
<tr>
<td>B.0</td>
<td>28 January 2021</td>
<td>Add component to Contents table. Update technical specifications.</td>
</tr>
<tr>
<td>A.0</td>
<td>9 November 2020</td>
<td>New user guide for Countess™ 3 FL Automated Cell Counter.</td>
</tr>
</tbody>
</table>

The information in this guide is subject to change without notice.

DISCLAIMER: TO THE EXTENT ALLOWED BY LAW, THERMO FISHER SCIENTIFIC INC. AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Important Licensing Information: These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

TRADEMARKS: All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

©2022 Thermo Fisher Scientific Inc. All rights reserved.
CHAPTER 1 Product information .. 7
Contents ... 7
Product description ... 8
Upon receiving the instrument ... 8
Register your instrument .. 8
Exterior instrument parts .. 9

CHAPTER 2 Installation ... 10
Operating environment ... 10
Install the instrument .. 10
Turn ON the instrument ... 10
Sign in to the instrument with a new Thermo Fisher™ Connect Platform account 11
Sign in to the instrument with an existing Thermo Fisher™ Connect Platform account ... 13

CHAPTER 3 Protocols .. 14
Protocols screen .. 14
Protocol functions ... 15
Count parameters .. 15
Load a protocol ... 16
Create a protocol ... 16
Edit a protocol ... 16
Import a protocol .. 17
Export a protocol .. 18
Delete a protocol ... 19

CHAPTER 4 Slide preparation and operation 20
Recommendations ... 20
Load Countess™ Cell Counting Chamber Slide 20
Load the Countess™ Reusable Slide 21
<table>
<thead>
<tr>
<th>CHAPTER 5 Cell count and cell viability assays</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count cells in brightfield</td>
<td>24</td>
</tr>
<tr>
<td>Capture and count</td>
<td>24</td>
</tr>
<tr>
<td>Next steps</td>
<td>25</td>
</tr>
<tr>
<td>View results</td>
<td>26</td>
</tr>
<tr>
<td>Results screen for brightfield</td>
<td>26</td>
</tr>
<tr>
<td>Identify objects counted</td>
<td>26</td>
</tr>
<tr>
<td>Results screen</td>
<td>26</td>
</tr>
<tr>
<td>Identify cells counted in cell count and cell viability assays</td>
<td>27</td>
</tr>
<tr>
<td>Histogram count results</td>
<td>28</td>
</tr>
<tr>
<td>View histogram</td>
<td>28</td>
</tr>
<tr>
<td>View scatter plot</td>
<td>29</td>
</tr>
<tr>
<td>Gate count results</td>
<td>29</td>
</tr>
<tr>
<td>Gating screen</td>
<td>29</td>
</tr>
<tr>
<td>Gate count results</td>
<td>30</td>
</tr>
<tr>
<td>Save as new protocol</td>
<td>30</td>
</tr>
<tr>
<td>Edit and save a new protocol</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 6 Fluorescence assays</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count cell fluorescence</td>
<td>31</td>
</tr>
<tr>
<td>Overview</td>
<td>31</td>
</tr>
<tr>
<td>Count procedure</td>
<td>31</td>
</tr>
<tr>
<td>Next steps</td>
<td>34</td>
</tr>
<tr>
<td>View results</td>
<td>34</td>
</tr>
<tr>
<td>Results screen for cell fluorescence assays</td>
<td>34</td>
</tr>
<tr>
<td>Identify objects counted</td>
<td>35</td>
</tr>
<tr>
<td>Identify cells counted in fluorescence assays</td>
<td>35</td>
</tr>
<tr>
<td>Histogram count results</td>
<td>35</td>
</tr>
<tr>
<td>View histogram for cell fluorescence assays</td>
<td>35</td>
</tr>
<tr>
<td>Gate count results</td>
<td>37</td>
</tr>
<tr>
<td>Gating screen</td>
<td>37</td>
</tr>
<tr>
<td>Gate count results</td>
<td>37</td>
</tr>
<tr>
<td>Save as new protocol</td>
<td>38</td>
</tr>
<tr>
<td>Edit and save a new protocol</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 7 Calculators</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Dilution Calculator</td>
<td>39</td>
</tr>
<tr>
<td>Cell Splitting Calculator</td>
<td>40</td>
</tr>
</tbody>
</table>
CHAPTER 8 Save results ... 42
 Save screen ... 42
 Save procedure ... 42
 Report .. 45
 Report file ... 45

CHAPTER 9 Settings overview ... 47
 Settings screen ... 47
 Connect to a wireless network ... 47
 Connect to a network drive ... 47
 Software update ... 48
 Guidelines for software update 48
 Update the Countess™ 3/3 FL Cell Counter software 48
 Set the date and time .. 49
 Change your cloud region ... 52

CHAPTER 10 Change EVOS™ light cubes 54
 Install or change an EVOS™ light cube 54

CHAPTER 11 Maintenance .. 56
 Instrument care .. 56
 General guidelines for care .. 56
 Power supply .. 56
 Clean the cell counter ... 57
 Introduction ... 57
 Clean the touchscreen .. 57
 Clean the instrument case ... 57
 Decontaminate the instrument .. 58

CHAPTER 12 Operational Qualification 59
 Generate and activate a license .. 59
 Execute the Operational Qualification (OQ) 60
IMPORTANT! Before using this product, read and understand the information in the “Safety” appendix in this document.

Contents

The Countess™ 3 FL Automated Cell Counter is shipped with the components listed below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countess™ 3 FL Automated Cell Counter</td>
<td>1 each</td>
</tr>
<tr>
<td>Power cord with 4 adapters (for U.S./Canada/Taiwan/Japan, Europe, or UK)</td>
<td>1 each</td>
</tr>
<tr>
<td>Countess™ Cell Counting Chamber Slides (50 slides/box)</td>
<td>1 box</td>
</tr>
<tr>
<td>Countess™ 3 FL Disposable Slide Holder</td>
<td>1 each</td>
</tr>
<tr>
<td>Countess™ 3 FL Reusable Slide Holder</td>
<td>1 each</td>
</tr>
<tr>
<td>Countess™ 3 FL Light Cube Removal Tool</td>
<td>1 each</td>
</tr>
<tr>
<td>Countess™ 3 USB Drive</td>
<td>1 each</td>
</tr>
<tr>
<td>Countess™ 3 FL Automated Cell Counter Quick Reference Card</td>
<td>1 each</td>
</tr>
<tr>
<td>Wi-Fi Dongle</td>
<td>1 each</td>
</tr>
</tbody>
</table>
Product description

The Countess™ 3 FL Automated Cell Counter is a fully automated, 3-channel cell counter and assay platform that uses EVOS™ light cube technology, state-of-the-art optics, and image analysis algorithms to analyze fluorescently labeled cells or trypan blue stained samples in suspension.

- The Countess™ 3 FL Automated Cell Counter offers an intuitive user interface with the option to save data and generate a report, which can then be transferred to a PC using the USB drive supplied with the instrument or available separately.
- The cells to be counted are loaded into the instrument either in disposable Countess™ Cell Counting Chamber Slides or in glass Countess™ 3 FL Reusable Slides (page 20). Each chamber slide contains two enclosed chambers to hold the sample to allow you to measure two different samples or perform replicates of the same sample.
- The instrument takes 10–20 seconds per sample for a typical cell count in the brightfield channel and is compatible with a wide variety of eukaryotic cells. In addition to cell count and viability, the Countess™ 3 FL Automated Cell Counter also provides information on cell size.
- In addition to the brightfield channel, the Countess™ 3 FL Automated Cell Counter can accommodate two interchangeable EVOS™ fluorescent light cubes (page 70), enabling it to be used for multiple-fluorescence research applications.
- When equipped with EVOS™ light cubes, the Countess™ 3 FL Automated Cell Counter can be used to perform fluorescence assays for cells in suspension, including simultaneous counts of cells stained with two different fluorescent dyes, GFP and RFP expression, apoptosis, and cell viability (live, dead, and total cells).

Upon receiving the instrument

Examine the instrument carefully for damage incurred during transit. Ensure that all parts of the instrument, including accessories listed above, are included with the product. Damage claims must be filed with the carrier; the warranty does not cover in-transit damage.

See “Install the instrument” on page 10 for instructions on installing the instrument.

Register your instrument

Visit www.thermofisher.com/registercountess to register your instrument. You will be asked to supply the serial number, your name, and your contact details. Registering your instrument ensures that you will receive notifications of software upgrades and information on new assays for use with the Countess™ cell counter.
Exterior instrument parts

1. **Touchscreen display**: The 7-inch capacitive display is the main user interface of the Countess™ 3 FL Automated Cell Counter. It contains the buttons for all instrument functions and displays data from the cell count.

2. **Front USB port**: Allows you to transfer and save the cell count data and image to an external computer for record keeping and printing purposes. You can use the USB drive supplied with the instrument or any other standard, FAT32-, exFAT- or NTFS-formatted USB drive for data transfer. If desired, you can plug in a USB mouse into the rear USB port for instrument control.

3. **Slide port**: Used to insert the analysis slide containing the sample into the counter.
 The Countess™ 3 FL Automated Cell Counter accepts both the disposable Countess™ Cell Counting Chamber Slides and the glass Countess™ 3 FL Reusable Slides via interchangeable, slide-specific carriers. For more information, see Chapter 4, “Slide preparation and operation”.

4. **Back panel**: Allows access to the optional EVOS™ light cubes and provides storage for the light cube tool and the reusable slide carrier. The back panel is secured to the instrument by two captive ¼-turn fasteners.

5. **Power switch**: ON/OFF rocker switch is the main power switch. It is not necessary to use the power switch for day-to-day operation of the instrument.

6. **EVOS™ light cubes**: Allow the Countess™ 3 FL Automated Cell Counter to analyze fluorescently labeled samples. Can accommodate two fluorescent light cubes. For more information, see “EVOS™ light cubes” on page 70.

7. **Rear USB port**: An additional USB port to perform functions such as plugging in a USB mouse for instrument control.

8. **Power input jack**: Connects the instrument to an electrical outlet through the supplied power cord and the appropriate plug, based on the electrical outlet configuration in your country.
Installation

Operating environment

- Place the instrument on a level surface away from vibrations emanating from other pieces of equipment.
- Allow at least 5 cm (2 in) free space at the back of the instrument to allow for proper ventilation and prevent overheating of electronic components.
- Set up the instrument away from direct light sources, such as windows. Ambient room lighting can enter the imaging path and affect the image quality.
- Operating temperature range: 4°–32°C (40°–90°F).
- Relative humidity range: <80%.

IMPORTANT! Do not position the instrument so that it is difficult to turn off the main power switch located on the back of the instrument.

In case of an instrument malfunction, turn the main power switch to the OFF position and disconnect the instrument from the wall outlet.

Install the instrument

1. Unpack the instrument and place the instrument on a flat, level, dry surface.
2. Remove the thin plastic protector film from the touch-screen display.
3. Plug one end of the power cord appropriate for your region into the instrument.
4. Plug the power cord into the electrical outlet. Be sure to use only the power cord supplied with your instrument. Powering the instrument with an unapproved power cord may damage the instrument.

Turn ON the instrument

After unboxing, upon switching on the instrument for the first time, it will run through a series of set-up screens.

- Read the End User License Agreement and press Agree to proceed with start up.
- Set the Date and Time using the buttons (see “Set the date and time” on page 49). Press Next.
- Upon completion, press Done. You will proceed to the Home screen and can begin using the instrument as described below.
1. Turn on the instrument by flipping the power switch on the back of the instrument to the ON position. See “Exterior instrument parts” on page 9. The instrument will walk you through an initial Out-of-Box Experience to set up the instrument for first use.

2. From the Home screen, you can proceed immediately to the assays by inserting a slide. See Chapter 5, “Cell count and cell viability assays”. Alternatively, you can change or add a protocol in step 3 below or change instrument settings in step 4 below.

3. To change the current protocol or add a new protocol to the instrument, press (Protocols). Protocols allows you to create customized count preferences (i.e., gate counts based on cell size, brightness, circularity and/or fluorescence intensity). See “Load a protocol” on page 16.

4. To change instrument settings, press (Settings). Settings allows you to update the Countess™ 3 FL instrument software, customize instrument settings, view instrument details, export error logs, and change up to two EVOS™ light cubes. See “Settings screen” on page 47.

Sign in to the instrument with a new Thermo Fisher™ Connect Platform account

Note: A Wi-Fi adapter needs to be installed and a Thermo Fisher™ Connect Platform account is required for linking. See http://thermofisher.com/connect for details on using the Connect platform.

1. Press (Sign in) from the Home screen.

2. Press Link account.
3. Choose a method to connect.

- Press **Mobile device**. Scan the QR code on your instrument using the Instrument Connect app on your mobile device. Follow the steps shown on the page.

- Press **PC** to obtain a linking code to enter online in your Connect platform account.

4. A completion screen will show. Press **Done**. You then return to the **Home** screen and are logged into your account.

Once set up, you will then only need to sign in to your instrument account using your **Username** and **PIN**.
Sign in to the instrument with an existing Thermo Fisher™ Connect Platform account

1. Press (Sign in) from the Home screen.
2. Select your Username from the drop-down box. Enter your PIN.
3. Press Sign in.
Protocols screen

Protocols allows you to create and save customized protocols. Each custom protocol defines the count parameters (size, brightness, circularity, and fluorescence intensity) for a consistent and streamlined workflow.

- Protocols can be accessed from the Home and Gating screens.
- The currently selected protocol is displayed at the bottom of the Home screen.
- Automatic instrument functions and count parameters are defined in the Edit protocol screen. See “Create a protocol” on page 16 or “Edit a protocol” on page 16.
- The Default protocol contains default count settings and cannot be edited.
- The count parameters specified in the selected protocol are applied to all new cell counts.
- Protocols can be sorted by pressing on the Name, Channels, or Last Modified headers.
- If you have already performed a count, loading a new protocol from the Results screen applies the count preferences to the current count results (total cells, viability, etc.) and to all new counts.
Protocol functions

The **Actions** screen allows you to edit, import, export, and delete protocols. **Edit** can be used to modify the currently selected protocol, while **Import**, **Export**, and **Delete** can be used on multiple protocols.

![Actions screen](image)

Count parameters

Count parameters are adjusted in the **Edit Protocol** screen using the **Gating** sliders. Moving the top and bottom gate boundaries adjusts the range of size, brightness, and circularity parameters.

![Edit Protocol screen](image)

1. **Size Gating**: Moving the top gate down removes larger objects; moving it up includes larger objects. Moving the bottom gate up removes smaller objects; moving it down includes smaller objects.
2. **Brightness Gating**: Moving the top gate down removes brighter objects; moving it up includes brighter objects. Moving the bottom gate up removes dimmer objects; moving it down includes dimmer objects.
3. **Circularity Gating**: Moving the top gate down removes more circular objects; moving it up includes more circular objects. Moving the bottom gate up removes less circular objects; moving it down includes less circular objects.

Gating Boundary Sliders

Live or **Dead** can be selected only on a brightfield count. For a fluorescence count using the Countess™ 3 FL instrument, select the individual channels.

- **Setup** – Press **Setup** to select the required channels (e.g., BF, GFP, TX Red) for capture. BF (brightfield) is checked by default and cannot be deselected.
- **Calculators** – Press **Calculators** to access the Pre-Dilution and Cell Splitting Calculators and store default calculator values. For detailed protocols, see Chapter 7, “Calculators”.
- **Save** – Press **Save** to save default save settings and your data to the cloud or a USB. For details, see “Save screen” on page 42.
Load a protocol

1. Press \(\text{Protocols} \).

2. Press the desired protocol to select, then press \textbf{Load}.

3. To return to the previous screen without loading the new protocol, press \textbf{Cancel} or \(\text{Back} \). The instrument will keep the saved protocol, but will return to the previous screen without loading it.

Create a protocol

1. Press \(\text{Protocols} \).

2. Press \textbf{Create}. To assign a name to the new protocol or to change the name of the existing protocol, press the Protocol name text box to open the keypad.

![Keyboard Image]

3. Type in the desired protocol name. To enter symbols, press the symbol (@%&) key. To return to the alpha-numeric keypad, press \textbf{ABC}.

4. Press \textbf{Enter} to save the name and return to the \textit{New Protocol} screen. Press \(\times \) to return to the \textit{New Protocol} screen without saving the name.

5. Press \textbf{Save} to save the new protocol. Press \textbf{Cancel} or \(\text{Back} \) to return to the \textit{Protocols} screen without saving.

Edit a protocol

1. Press \(\text{Protocols} \).

2. Select an existing protocol, then press \textbf{Actions}.

\textbf{Note:} The default protocol contains default count settings and cannot be edited.
3. Press **Edit**.

The **Edit** screen for the selected protocol opens.

4. Press the appropriate channel (BF or other dye) and edit the desired parameters to create a custom protocol. Additionally, use the **Setup**, **Calculators**, and **Save** buttons to set up any of the needed parameters to complete the custom protocol. For details, see “Count parameters” on page 15.

5. Press **Save**.

From the **Protocols** screen, select the desired protocol and press **Load** to use that protocol to read the sample.

Import a protocol

1. Press **† † (Protocols)**.

2. Press **Actions**.

3. Press **Import**.

4. Press the import location **Cloud** or **USB**.
 a. For **Cloud**, press **Sign in** to log in to your Thermo Fisher Connect account. If the **Cloud** is not active and disconnected, press **Network settings** to connect to a network, then press **(Back)** to try and sign in again.
b. For **USB**, insert your USB drive into the slot on the front of the instrument.

5. Press **Next**.

6. Select one or more protocols from the list.

7. Press **Import**.

8. Once complete, press **Done**.

Export a protocol

1. Press **(Protocols)**.

2. Press **Actions**.

3. Press **Export**.

4. Select one or more protocols from the list.

5. Press **Next**.

6. Press the export location **Cloud** or **USB**.
 a. For **Cloud**, press **Sign in** to log in to your Thermo Fisher Connect account. If the **Cloud** is not active and disconnected, press **Network settings** to connect to a network, then press **(Back)** to try and sign in again.
b. For **USB**, insert your USB drive into the slot on the front of the instrument.

7. Press **Export**.

8. Once complete, press **Done**.

Delete a protocol

1. Press **∥∥ (Protocols).**

2. Press **Actions.**

3. Press **Delete.**

4. Select one or more protocols from the list.

5. Press **Delete.**

 The system will prompt you to confirm the deletion, then press **Delete** again.

6. Once complete, press **Done.**
The Countess™ 3 and 3 FL cell counters accept disposable Countess™ Cell Counting Chamber Slides and glass Countess™ Reusable Slides on interchangeable, slide-specific carriers.

Recommendations

To obtain the best results, follow these recommendations:

- Ensure that the cell sample is homogeneously mixed.
- The measurement range extends from 1×10^4 to 1×10^7 cells/mL, but the optimal range is 1×10^5 to 4×10^6 cells/mL.
- For accurate results in cell viability assays, ensure that the counting area is covered with the cell suspension and count the cells immediately after staining per the assay protocol.
- Do not press the optical surfaces of the chamber slides. Hold the slides by the edges.
- Take care to avoid forming bubbles in the sample.

Load Countess™ Cell Counting Chamber Slide

1. Prepare the sample by adding 10 µL of your cell suspension to 10 µL of 0.4% trypan blue stain (for brightfield only). Mix the sample mixture well by pipetting it up and down a few times.

2. Gently pipet 10 µL of the sample into the half moon-shaped sample loading area. The sample is loaded into the chamber through capillary action.
3. Let the sample mixture settle in the chamber for 30 seconds, and then insert the slide into the slide adapter. You will hear a soft click once the slide is pushed in correctly.

Note: The instrument reads one side of the slide at a time, so insert the sides appropriately.

Note: The instrument is shipped with the slide adapter already installed.

4. Use the touchscreen to run the sample count. See Chapter 5, “Cell count and cell viability assays”.

5. To remove the slide, push the slide gently into the instrument until it clicks and the slide springs out. Grasp the slide and pull it out the rest of the way.

Note: After using the Countess™ Cell Counting Chamber Slides, appropriately dispose of them as biohazardous waste. **Do not reuse the disposable chamber slides.**

6. *(Optional)* To remove the slide adapter, gently squeeze the tabs and pull the adapter completely out of the instrument.

Load the Countess™ Reusable Slide

1. Before loading your sample into the Countess™ Reusable Slide, place a cover slip on the counting chamber, making sure the cover slip is clean and free of grease.

2. Prepare the sample by adding 10 µL of your cell suspension to 10 µL of 0.4% trypan blue stain (for brightfield only). Mix the sample mixture well by pipetting it up and down a few times. For a fluorescence sample, only add 10 µL of your sample neat.
3. Gently pipet 10 µL of the sample into the sample inlet, allowing capillary action to draw the sample into the counting chamber. A properly loaded counting chamber should have a thin, even film of fluid under the cover slip.

Note: Each chamber in the Countess™ Cell Counting Chamber Slide or the Countess™ 3 FL Reusable Slide has a 10-µL sample capacity. Do not overfill the slide chambers.

4. To use the Countess™ Reusable Slide, unlatch the back panel of the Countess™ 3 FL Automated Cell Counter with the two captive ¼-turn fasteners that secure the back panel on the rear of the instrument.
5. Remove the reusable slide holder from inside of the back panel.

6. Load the reusable glass slide into the reusable slide holder.

7. Insert the reusable slide holder containing the slide into the slide port and gently push into the instrument until it clicks into place.

8. Use the touchscreen to run the sample count. See Chapter 5, “Cell count and cell viability assays”.

9. To remove the reusable slide holder, push the slide gently into the instrument until it clicks and a spring pushes the slide out. Grasp the slide and pull it out the rest of the way.

10. (Optional): To count the second sample present on the reusable slide, simply remove the slide from the holder, rotate, and reinsert the slide into the holder so that the second sample is aligned with the sample viewing hole.

11. After using the Countess™ Reusable Slide, rinse the glass slide and cover slip with water, and then clean with 70% ethanol. Use Kimwipes™ laboratory tissues to clean and dry the slides, as needed.

12. Store the reusable slide holder again in the panel on the back of the instrument.
Cell count and cell viability assays

Count cells in brightfield

Capture and count

To bypass adjusting individual parameters before the brightfield count, you can select Rapid capture at the top of the Home screen. This will automatically set the parameters and perform a count as soon as the slide is inserted into the instrument. To adjust parameters prior to the count, follow the procedure below.

1. Load the samples into the instrument as described in Chapter 4, “Slide preparation and operation”.

2. (Optional): Press Protocols and load the desired gating parameter settings as described in “Load a protocol” on page 16.

3. Insert the sample slide into the slide port, making sure that the sample side is inserted completely into the instrument. You will hear a soft click if the slide is pushed in correctly.

4. When the slide is inserted, the instrument automatically illuminates the sample, sets the intensity of brightfield illumination, and auto focuses on the cells.

 Note: Auto lighting is optimal for producing accurate results, but if needed, can be disabled by adjusting the lighting slider.

5. (Optional): Set exposure using the light source slider.

 The light source slider controls the LED intensity, camera gain and exposure time, and allows you to adjust the image brightness.
Note: For the Countess™ 3 FL Automated Cell Counter equipped with an EVOS™ light cube, first press Adjust, and then select BF (brightfield) as the light source. Set the exposure, then press Apply to return to the Setup screen.

Note: If your instrument is equipped with an EVOS™ light cube, make sure that only the BF (brightfield) checkbox is selected before capturing the image.

The instrument captures the image and displays the results (total concentration, percentage, and concentration of live and dead cells). For more information, see “View results” on page 26. Autosaving will occur when the count is completed if you have Autosave enabled from the Save Options screen.

Next steps

- To identify the objects (i.e., cells) counted as Live, press 🟢. To identify objects counted as Dead, press 🔴. See “Identify cells counted in cell count and cell viability assays” on page 27.

 Note: The Live and Dead buttons are enabled by default after the image has been counted.

- To see the distribution of live and dead cells in a graphical format, press 📊 (Histogram). See “Histogram count results” on page 28.

- To gate the results by object size, brightness, or circularity, press Gating to go to the Gating screen. See “Gate count results” on page 29.

 Note: You can save the changes you make to the size, brightness, or circularity parameters in the Gating screen to the current protocol or as a separate protocol. See “Save as new protocol” on page 30.

- To calculate the volume of cell sample and buffer needed to reach a desired concentration based on the count results, press Calculators to open the Calculator applications. See Chapter 7, “Calculators”.

- To permanently save the results, press Save. See Chapter 8, “Save results”.

- To perform a new count, push the slide to eject, then insert a new sample slide.
View results

Results screen for brightfield

The Results screen for cell count and cell viability assays performed using the brightfield channel displays a composite image of the objects counted and the results of the cell count and cell viability calculations (total concentration, percentage and concentration of live and dead cells).

Note: When performing cell counts and cell viability assays in brightfield, the counting algorithm assumes that you have diluted your cells 1:1 in trypan blue and takes this dilution into account when calculating the total cell concentration. The cell concentration displayed in the Results screen is the original cell concentration before dilution into trypan blue.

Identify objects counted

Results screen

The Results screen allows you to identify the objects (i.e., cells) counted in each channel and included in the count results for further review. After reviewing the marked objects, you can adjust the threshold for size, brightness, and/or circularity as desired for your application. See “Gate count results” on page 30.
Identify cells counted in cell count and cell viability assays

On the Results screen, Live or Dead cells can be selected.

1. To view Live cells, press \(\text{on the right panel. This marks all Live cells in green.} \)

2. To view Dead cells, press \(\text{on the right panel. This marks all Dead cells in red.} \)

Note: You may select either or both options. The detailed image below shows both Live (green) and Dead (red) cells are selected.

3. To unmark the cells, press the appropriate colored button again.

Individual cells can be selected to view their specific size, brightness, and circularity gating settings. Zooming in on the image will allow for easier selection of individual objects. Click on the desired cell and a pop-up displays the parameters. Press \(\text{to close the pop-up.} \)
Histogram count results

View histogram

For cell count and cell viability assays performed in the brightfield channel, you can view the distribution of cells (live and/or dead) based on size in a graphical format.

Note: You can view the histogram on the Results and Gating screens.

1. To view the histogram showing the distribution of live and/or dead cells based on cell size, press (Histogram).

2. To view the distribution of only the live or dead cells, press the corresponding (Live) (green) or (Dead) (red) button.

 The graph will automatically update and display the distribution of cells based on size only in the selected population.

3. *(Optional):* Using the (Size), (Brightness), and (Circularity) sliders, adjust the count parameters. As you adjust the count parameters, the count results and the graph automatically update.

4. To close the histogram, press or .
View scatter plot

For cell count and cell viability assays performed in the brightfield channel, you can view the distribution of cells (live and/or dead) based on size in a scatter plot.

Note: You can view the scatter plot on the Results and Gating screens.

From the histogram view:

1. Tap (white).

2. *(Optional)*: Edit the x- or y-axis variables by tapping the variable arrow on the axis. You can choose between **Circularity** and **Cell Size (µm)** on either axis. Tap X to return to the scatter plot.

3. To view the distribution of only the live or dead cells, press the corresponding (Live) (green) or (Dead) (red) button.
 The plot will automatically update and display the distribution of cells based on size only in the selected population.

4. *(Optional)*: Using the (Size), (Brightness), and (Circularity) sliders, adjust the count parameters. As you adjust the count parameters, the count results and the graph automatically update.

5. To close the scatter plot, press or X.

Gate count results

Gating screen

The Gating screen for cell count and cell viability assays in the brightfield channel contains the controls for gating results based on size, brightness, and circularity. You can adjust the count parameters before or after performing a count, and save these changes to the current profile or as a separate profile (“Save as new protocol” on page 30).
Gate count results

1. On the Results screen, press Gating in the bottom right corner to open the Gating screen.

2. (Optional) Press Histogram to view the distribution of cells (live and/or dead) based on size as you gate the count results. See “Gate count results” on page 30.

3. Select the channel (Live or Dead) you wish to gate.

4. Select the count parameter (size, brightness, or circularity) to be changed.

5. Using the start and end gate sliders, adjust the count parameters.

 Note: For a description of the count parameters and count parameter controls (i.e., parameter sliders), see “Count parameters” on page 15.

6. When finished, press Apply to set the changes to the parameters and return to the Results screen.

7. To save the parameter changes to the current protocol or to create a protocol with the new parameters, see “Create a protocol” on page 16.

Save as new protocol

Edit and save a new protocol

If you have made changes to the count parameters after performing a count, you may save your settings to a new protocol.

2. To create a new protocol with the edited parameters, press Create. The new protocol screen opens and displays the edited count parameters from the Gating screen.

3. To update an existing protocol with the edited parameters, select a protocol from the list, then press Actions > Edit.

 Note: You cannot edit the Default protocol.

 The Edit Protocol screen opens. To import the current settings from the Gating screen, press Import settings.

4. To change the name of the selected protocol, press the Protocol name text box and enter the desired name using the alphanumeric keypad.

5. (Optional) If desired, make additional changes to the protocol and the count parameters.

6. Press Save to save the new protocol settings and return to the Protocols. Press Load to apply the protocol to your current and future counts OR press Cancel or (Back) to return to the Protocols screen, then Cancel or (Back) again to return to the Results screen without saving the changes to the protocol.
Count cell fluorescence

Overview

Countess™ 3 FL Automated Cell Counter equipped with the optional EVOS™ light cubes can be used for a variety of fluorescent applications, including simultaneous counts of cells stained with two different fluorescent dyes, GFP and RFP expression, and apoptosis and cell viability assays.

For instructions on installing EVOS™ light cubes to your Countess™ 3 FL Automated Cell Counter, see “Install or change an EVOS™ light cube” on page 54.

Count procedure

1. Ensure that your fluorescent cell sample is homogeneously mixed.

2. Load 10 µL of the fluorescent sample mixture per chamber into the sample slide as described in “Load Countess™ Cell Counting Chamber Slide” on page 20. Let the sample mixture settle for 30 seconds.

3. (Optional): Press Protocols to open the Protocols screen and load the desired gating parameter as described in “Load a protocol” on page 16.

4. Insert the sample slide into the slide port (“Exterior instrument parts” on page 9), making sure that the sample side is inserted completely into the instrument. You will hear a soft click if the slide is pushed in correctly.

5. When the slide is inserted, the instrument automatically illuminates the sample, sets the intensity of brightfield illumination, and auto focuses on the cells.

 Note: Auto lighting is optimal for producing accurate results, but if needed, can be disabled by adjusting the lighting slider.

6. To view your sample under a different light source, press the desired light source button (BF (brightfield) or a source provided from an installed light cube (e.g., GFP, DAPI, TX Red, etc.)). The instrument displays the sample in the selected channel (brightfield or fluorescent). In the example below, the sample is displayed in the DAPI channel.
Note: The light source buttons select the light channel (brightfield and/or fluorescence) for sample illumination and are used when setting the exposure for the selected channel (Steps 9-11); they do not determine which channels are used for capturing the image.

7. To set exposure, press Adjust to go to the Adjust screen.

8. Press the light source button for the channel you wish to set exposure and adjust the exposure using the light source slider. Repeat the procedure for the remaining channels, if desired.

9. Press Apply to keep the current setting and return to the Setup screen OR press Cancel or (Back) to return to the Setup screen without saving changes.
10. On the **Setup** screen, select the check boxes to the right of the channels you wish to capture. BF (brightfield) is checked by default and cannot be deselected.

11. Press **Count**.

 The instrument captures the images and displays the results (total concentration, percentage and concentration of cells counted in each fluorescence channel). For more information, see “View results” on page 34.

 Autosaving will occur when the count is completed if you have **Autosave** enabled from the **Save Options** screen.
Next steps

- To identify the brightfield objects (i.e., cells), press \(\text{[technology]} \). For identifying fluorescence objects, press the appropriate colored icon for the specific EVOS™ light cube (e.g., press \(\text{[color]} \) for GFP, press \(\text{[color]} \) for TX Red).

- To see the distribution of cells counted through each channel in a graphical format, press \(\text{[technology]} \) (Histogram). See “View histogram for cell fluorescence assays” on page 35.

- To gate the results by object size, brightness, circularity, or relative fluorescence intensity, press Gating. See “Gating screen” on page 37.

 Note: Changes made in the current or a separate template to size, brightness, circularity, and relative fluorescence intensity can be saved directly from the Gating screen.

- To calculate the volume of cell sample and buffer needed to reach a desired concentration based on the count results, press Calculators to open the Calculator application. See Chapter 7, “Calculators”.

- To permanently save the results, press Save. See “Save screen” on page 42.

- To perform a new count, push the slide to eject, then insert a new sample slide.

View results

Results screen for cell fluorescence assays

The Results screen for cell fluorescence assays displays a composite image of the objects counted and the results of the cell count and cell viability calculations (total concentration, percentage and concentration of cells counted through each fluorescence channel).

![Results screen](image)

Note: The total cell concentration displayed after a fluorescent count does not take any dilution into account. Therefore, the results reflect the actual cell concentration in the sample slide, which must be multiplied by any dilution factor present to calculate the original cell concentration. See Chapter 7, “Calculators”.
This is in contrast to the cell counts in brightfield, where the counting algorithm assumes a 1:1 dilution of the sample in trypan blue and displays the original cell concentration (i.e., before the dilution) in the Results screen.

Identify objects counted

Identify cells counted in fluorescence assays

1. On the Results screen, select the appropriate icon/s to turn on or off the layer/s viewed. For example, select 🌈.

2. To identify the cells that are counted in a specific channel, press the corresponding contours icon. Cells counted in the selected channel will be circled on the screen with the same color as the selected channel. For example, select 🟡.

In the example below, both the DAPI and TX Red boundary buttons are selected, and the cells counted in the DAPI and TX Red channels are marked with blue and red circles, respectively.

3. To unmark the cells counted in a specific channel, press the corresponding boundaries button again.

Histogram count results

View histogram for cell fluorescence assays

For fluorescence assays, you have the option of viewing the distribution of the cells based on size or based on relative fluorescence intensity in a graphical format.

Note: You can view the histogram on the Results and Gating screens.

1. To view the histogram showing the distribution of cells based on size, press 📊 (Histogram) and then select BF (brightfield).

The histogram displays the size distribution of the total cell count (number of cells vs. cell size in µm) and the average size of the cells counted in each available fluorescence channel.
2. To view the distribution of cells based on relative fluorescence intensity, press \(\text{(Histogram)}\), then select FL (fluorescence).

The histogram displays the distribution of cells based on fluorescence intensity.

3. To remove the cells counted in a specific channel from the histogram, press the corresponding channel button on the histogram.

The histogram automatically updates and displays the distribution of cells based on relative fluorescence intensity only in the selected (i.e., checked) channel.

4. To add the cells counted in a specific channel to the histogram, press the corresponding channel button.

5. To close the histogram, press \(\text{(Histogram)}\) or \(\text{(Close)}\).
Gating screen

The **Gating** screen for cell fluorescence assays contains the controls for gating count results based on size, brightness, circularity, and fluorescence intensity. You can adjust the count parameters before or after performing a count, and save these changes to the current protocol or as a separate protocol (“Save as new protocol” on page 30).

Gate count results

1. On the **Results** screen, press **Gating** to open the count parameters screen containing the controls for adjusting the count parameters in the selected channel.

 Note: For a description of the count parameters and count parameter controls (i.e., parameter sliders) see “Count parameters” on page 15.

2. *(Optional):* Press **Histogram** to view the distribution of cells based on size or fluorescence intensity. See “View results” on page 34.

3. Press **BF** (brightfield) to adjust the parameters for size, brightness, and circularity using the gating sliders.

4. Select the desired fluorescence channel (e.g., DAPI, TX Red, etc.) to adjust the threshold for fluorescence intensity using the fluorescence intensity slider.

 Note: The fluorescence channels available depend on the EVOS™ light cubes installed in the instrument.

5. When finished, press **Apply** to save the changes to count parameters and return to the **Results** screen OR press **Cancel** or **(Back)** to return to the **Results** screen without saving the changes.

6. To save the parameter changes to the current protocol or to create a protocol using the new count parameter, see “Edit and save a new protocol” on page 38.
Save as new protocol

Edit and save a new protocol

If you have made changes to the count parameters after performing a count, you may save your settings to a new protocol.

2. To create a new protocol with the edited parameters, press Create. The new protocol screen opens and displays the edited count parameters from the Gating screen.

3. To update an existing protocol with the edited parameters, select a protocol from the list, then press Actions ➔ Edit.

 Note: You cannot edit the Default protocol.

 The Edit Protocol screen opens. To import the current settings from the Gating screen, press Import settings.

4. To change the name of the selected protocol, press the Protocol name text box and enter the desired name using the alphanumeric keypad.

5. *(Optional)* If desired, make additional changes to the protocol and the count parameters.

6. Press Save to save the new protocol settings and return to the Protocols screen. Press Load to apply the protocol to your current and future counts OR press Cancel or (Back) to return to the Protocols screen, then Cancel or (Back) again to return to the Results screen without saving the changes to the protocol.
Pre-Dilution Calculator

The **Pre-Dilution Calculator** is used to account for diluting a very concentrated sample before loading it into a sample slide for counting.

For a brightfield count, this calculator also has an option to account for trypan blue use.

1. On the **Results** screen, press **Calculators** then select **Pre-Dilution Calculator**.

2. Click in one of the text fields.

Note: For BF (brightfield) counts using trypan blue, you can select the checkbox at the bottom of the screen to correct for a 1:1 trypan blue dilution.
3. Using the keypad, enter the appropriate volumes and concentrations needed for your experiment. Press Enter after filling in both text boxes.

![Image of Pre-Dilution Calculator]

4. Press Calculate. The result will appear at the top of the Results screen.

![Image of Results Screen]

Cell Splitting Calculator

The Cell Splitting Calculator is used to determine the amounts of sample and buffer needed to reach a desired concentration.

1. On the Results screen, press Calculators then select Cell Splitting Calculator.
2. Click in one of the text fields.

![Cell Splitting Calculator](image1)

3. Using the keypad, enter the appropriate volumes and concentrations needed for your experiment. Press **Enter** after filling in the text boxes.

![Cell Splitting Calculator](image2)

4. The calculation will automatically update below the text fields. When completed, press **Done**.

![Cell Splitting Calculator](image3)
Save results

Save screen

The Countess™ 3 and 3 FL cell counters allow you to save your data and images using a USB flash drive, a link to a Thermo Fisher Connect account, or a link to a network drive.

To save your experiment, choose from the following options, in any combination:

- **Result**: Saves the Results screen as it is displayed on the instrument, with or without the graph, in the selected image format (JPEG, PNG, or TIFF).
- **Images**: Saves the raw captured image as well as underlying channel images in the selected image format (JPEG, PNG, or TIFF).
- **Report**: Saves a printer-friendly report of the results, graph(s), and image in PDF. For more information, see “Report file” on page 45.
- **CSV**: Saves the data from current and previous counts as a CSV file (comma separated values). The CSV format allows for processing or re-displaying results with any third party software or spreadsheet program. For more information on the CSV file format, see Appendix E, “CSV file format definition” Appendix E: CSV file format.

Note: A dropdown list will provide options for how many counts to save. You can choose from Current Count, Session, Today, Yesterday, Previous 7 days, Previous 30 days, or All.

- **FCS**: Saves the data from the experiment as a Flow Cytometry Data File Standard. The FCS format allows for processing or re-displaying results with FlowJo™ or flowCore commonly used tools for flow cytometry.

Note: If you wish to save your results with the graph showing the distribution of cells based on cell size or fluorescence intensity, make sure that the desired graph is displayed on the Results screen.

Save procedure

1. To save your data, insert the Countess™ USB drive (or equivalent) into an available USB port on the instrument or confirm the instrument is connected to a Thermo Fisher Connect account or network drive.

Note: If the instrument is not connected to a network, then use Network settings at the bottom of the screen to reconnect.

Note: The USB ports located in the front and the back of the instrument function the same. However, the first USB drive connected will be the preferred saving location.
2. On the **Results** screen, press **Save** to view the **Save** screen.

3. To assign a name to your count, press the **Sample name** text field and enter the name. To enter symbols, press the @%& key. To return to the keypad, tap the **ABC** key.

4. Press **Enter** to save the name and return to the **Save** screen. To return to the **Save** screen without saving the name, press **X** (Close).

5. Select the desired file type to save your experiment (**Result**, **Images**, **CSV**, **Report**, **Cell Data**). You can select an individual mode (e.g., **Result only**) or any combination of modes (e.g., **Result**, **Images**, **Data**, and/or **Report**).

 In the example below, **Report** and **CSV** are selected.

6. By default, **Result** and **Images** are saved as TIFF files, and **CSV** uses the current capture data.
7. To choose a different file format, press the desired file type. Available options are JPEG, PNG, and TIFF. For CSV files, you can choose from the selections of Current Count, Session, Today, Yesterday, Previous 7 days, Previous 30 days, or All.
 After you make your selection, the instrument returns to the Save screen.
 To return to the Save screen without changing the file format, press \(\times \) (Close).

8. Press Save to save your experiment to the selected mode(s) in the USB drive, Connect account, or network drive.

9. Press Done and then transfer the USB drive to the desired location.
Report

Report file

The **Report** function allows you to save a printer-friendly report of the results, graphs, and images in PDF format.

Report from brightfield count

- The top section of the report contains a table with the results as displayed on the **Results** screen, showing the concentration of the sample and the percentage and number for the total, Live, and Dead channels. The report also displays the template information used to gate these images.
- Below the results table, the report contains the “Number of Cells (µm) vs. Cell Size” graph and “Cell Size (µm) vs. Circularity” scatter plot.
- Under the graph, the report contains the brightfield count image, with the live and dead cells identified by the green and red circles, respectively.
Report from fluorescence count

- The top section of the report contains a table with the results as displayed on the Results screen, showing the concentration of the sample, and the percentage and number of cells for the total, FL1, FL2, and FL1 + FL2 channels. The report also displays the profile information used to gate these images.

- Below the results table, the report contains the “Number of Cells vs. Cell Size” graph on the left, and “Number of Cells vs. RFU (relative fluorescence units)” graph on the right. Below the bar graphs are the scatter plots showing “Circularity vs. Cell Size (µm)” and “TX Red vs. GFP”.

- Under the graphs, the report contains the count images, with the brightfield image on the left and the fluorescence images on the right.

In the brightfield image, the cells counted in the brightfield channel are identified by the white “total count” circles.

In the fluorescence image (overlaid, if there are two channels), the cells counted are identified by the circles with the same color as the fluorescence channel in which they were counted (in two colors, if there are two cubes installed).
Settings overview

Settings screen

To access the Settings screen, press \(\text{\textregistered} \) (Settings) on the Home page.

Settings allows you to:

- Perform software updates (see “Update the Countess™ 3/3 FL Cell Counter software” on page 48)
- Set the date and time (see “Set the date and time” on page 49)
- Change or install EVOS™ light cubes (see “Install or change an EVOS™ light cube” on page 54)

Connect to a wireless network

<table>
<thead>
<tr>
<th>Network connecting options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. From the Home screen, press (\text{\textregistered}) (Settings).</td>
</tr>
<tr>
<td>4. Select the desired network and press Connect.</td>
</tr>
<tr>
<td>1. From the Home screen, press (\text{\textregistered}) (Save options).</td>
</tr>
<tr>
<td>3. Select the desired network and press Connect.</td>
</tr>
</tbody>
</table>

Follow either set of steps to also disconnect the current network and connect to a new one.

Connect to a network drive

1. From the Home screen, press \(\text{\textregistered} \) (Settings).

4. Press Drive location. Enter the IP address for your shared folder.

5. \(\text{\textregistered} \) (Optional): Enter any additional information, including a Domain name, Username, or Password.

Note: Consult with your local IT representative for questions regarding drive location and domain name.

6. Press Connect.
The network drive is now connected. If needed, you can edit the Drive location, Domain name, or Username by pressing Edit.

Software update

Guidelines for software update

- Software updates can be done via your Connect account. When connected to the internet, the system will automatically check for and download software updates to the instrument.

 Note: Using the Cloud will require a Wi-Fi dongle be installed in the instrument.

- The USB drive used for transferring the software update file must be FAT32 formatted; verify this before proceeding. If necessary, reformat the USB drive to FAT32 following the recommended procedure for your operating system.

 Note: Reformatting the USB drive will result in the loss of all files. Back up the files in the USB drive prior to reformatting.

- The software update file must be saved on the top level of the USB drive, not within a folder or a subfolder.

- The software update file must be uncorrupted during transfer. Do not rename, zip, or compress the software update file.

Update the Countess™ 3/3 FL Cell Counter software

1. Go to www.thermofisher.com/countessupdate, and download the latest Countess™ 3/3 FL cell counter software version to your desktop.

 Note: The software update file has a version-specific name followed by the extension.exe (e.g., Countess_xxxx for software version 2.0.202).

2. Copy the software update file onto the USB drive, making sure that it is saved on the top level and not hidden within a folder.

3. Insert the USB drive into one of the USB ports of the instrument.

4. Press (Settings) on the Home page to open the Settings screen.
5. Press **Software Update**.

 ![Software Update](image)

6. Select the update location. Press **Next**.

 If the **Cloud** option is disconnected, press **Network settings** to proceed to reconnect to your network.

 Note: Using the Cloud will require a Wi-Fi dongle be installed in the instrument.

7. If an update is available, press **Update**. Once the update has completed, the **Home** screen will appear to resume normal operation.

Set the date and time

1. Press **@ (Settings)** on the **Home** page.

2. Press **Instrument Settings**.

3. Press **Date and Time**.

 ![Date and Time](image)
4. Select the date format (Month/Day/Year, Day/Month/Year, or Year/Month/Day).

5. Press inside the Date text box to open the Edit Date keypad.

6. Using the keypad, enter the date into the Month, Day, and Year text boxes. Press Enter.
7. Press the Time text box to open the Edit Time keypad.

8. Using the keypad, enter the time into the Hours and Minutes text boxes.

9. Press the drop-down menu under Time to select your time zone from the list. If needed, press Search to use a keyboard to type in your search term (e.g., pst, cst, etc.).
10. Select the time format you wish to use (12 Hours with AM or PM or 24 Hours).

11. Press Apply to set the Date and Time and return to the Instrument Settings screen. Press Cancel or (Back) to return to the Instrument Settings screen without saving your changes.

Change your cloud region

1. Press Settings on the Home page.
3. Press Cloud region. Your current cloud region is displayed at the bottom of the screen.
4. Select the desired cloud region from the available choices. Press **Change**.

5. Once the change is complete, press **Done**.

Note: Changing the cloud region will require relinking of all instrument accounts.
Install or change an EVOS™ light cube

The Countess™ 3 FL Automated Cell Counter can accommodate up to two EVOS™ light cubes. Each user-interchangeable, auto-configured EVOS™ light cube contains an LED, collimating optics, and filters for fluorescence applications. EVOS™ light cubes do not come standard with the device and must be purchased separately (“EVOS™ light cubes” on page 70). To install or change a light cube:

1. Press Settings on the Home page.
3. Press Change light cube. The instrument positions the light cube tray to enable light cube installation.
4. When prompted, power off the Countess™ 3 FL Automated Cell Counter using the power switch on the back of the instrument (“Exterior instrument parts” on page 9).
5. Unplug the power cord from the Countess™ 3 FL Automated Cell Counter.
6. Unlatch the back panel with the two captive ¼-turn fasteners (indicated by black arrows below) that secure the back panel on the rear of the Countess™ 3 FL Automated Cell Counter and remove the back panel.
7. Place the light cube into one of the empty slots in the back of the device.

8. Using the tool provided on the inside of the back panel (red arrow in Figure A), secure the light cube by tightening the two screws on the end of the cube (red arrows in Figure B).

A

B

Note: Figure B shows two light cubes installed.

9. To remove a light cube, unscrew both screws that secure it to the instrument.

10. Thread the light cube removal tool into the central hole in the cube (white arrows in Figure B) and gently pull the light cube out of the device.

Note: Always store the cube removal tool in the back panel for easy access.

11. Install the back panel and secure it in its place with both ¼-turn fasteners.

12. Plug the power cord back into the Countess™ 3 FL Automated Cell Counter.

13. Turn on the Countess™ 3 FL Automated Cell Counter by flipping the power switch on the back of the instrument to the ON position.
Instrument care

General guidelines for care

- Use the appropriate cleaning solutions for each component, as indicated in the cleaning procedures in “Clean the cell counter” on page 57.
- If liquid spills on the instrument, turn off the power immediately and wipe dry.

Power supply

Always use the correct power supply. The power adapter specifications appear on the serial number label (bottom of the instrument) and in the “Technical specifications” section of this user guide (“Technical specifications” on page 68). Damage due to an incompatible power adapter is not covered by warranty.

CAUTION! Never disassemble or service the instrument yourself. Do not remove any covers or parts that require the use of a tool to obtain access to moving parts. Operators must be trained before being allowed to perform the hazardous operation. Unauthorized repairs may damage the instrument or alter its functionality, which may void your warranty. Contact your local distributor to arrange for service.

IMPORTANT! If you have any doubt about the compatibility of decontamination or cleaning agents with parts of the equipment or with material contained in it, contact Technical Support or your local distributor for information.
Clean the cell counter

Introduction

Clean the Countess™ Automated Cell Counter periodically to prevent buildup of dust and dirt that might reduce its performance and cause contamination.

CAUTION! To avoid electrical shock, always turn OFF the Countess™ Automated Cell Counter and unplug the power cord before cleaning or decontaminating the instrument.

CAUTION! All biological samples and materials that come into contact with them have the potential to transmit infectious diseases and are considered biohazardous. Follow all applicable local, state/provincial, and/or national regulations. Wear appropriate protective eyewear, clothing, and gloves.

IMPORTANT! Using a cleaning or decontaminating method other than that specified by the manufacturer may result in damage to the instrument.

Clean the touchscreen

- Wipe the touchscreen of the Countess™ Automated Cell Counter using a soft, lint-free cloth moistened with an LCD cleaning solution. Do not apply excessive force during cleaning. Wipe the touchscreen dry immediately after cleaning.
- Ensure that the cleaning solution does not enter the power button, the power inlet, the slide port, or the USB ports.
- Never pour or spray any liquids directly on the instrument to avoid electrical shock when the instrument is plugged in.
- Do not use abrasive cleaning solutions or material to prevent the touch-screen from getting scratched.

Clean the instrument case

- Wipe the instrument case of the Countess™ Automated Cell Counter using a soft, lint-free cloth moistened with distilled water. Wipe the instrument dry immediately after cleaning.
- Ensure that water or other cleaning solutions do not enter the power button, the power inlet, the slide port, or the USB ports.
- Never pour or spray any liquids directly on the instrument to avoid electrical shock when the instrument is plugged in.
Decontaminate the instrument

- Wipe the instrument case of the Countess™ Automated Cell Counter using a soft, lint-free cloth moistened with 70% alcohol. Wipe the instrument dry immediately after cleaning.
- Avoid using a bleach solution, because it may leave a residue of bleach crystals on the instrument.
- Ensure that water or other cleaning solutions do not enter the power button, the power inlet, the slide port, or the USB ports.
- Never pour or spray any liquids directly on the instrument to avoid electrical shock when the instrument is plugged in.
Operational Qualification

The operational qualification ensures that the instrument is performing within the manufacturer specifications. The qualification requires a license, thumb drive, and Countess™ 3 Standard Slide (Cat. No. A51876, shipped with OQ purchase).

Generate and activate a license

1. To generate the license file, go to apps.thermofisher.com.
2. Sign in to your Thermo Fisher™ Connect Platform account.
3. Open the Countess™ Image Analysis application.

 Note: If the Countess™ application is not displayed on the Dashboard page, click View all apps to see a full list.

4. On the File Gallery screen, click on SAE Activation in the top right corner.
5. Enter the Order ID and Countess 3 Serial Number (found on your instrument).
6. Click Get activation file.
 A Request Submitted message will display when the order information is validated.
7. Once the file is ready, click on the Download is Ready window and select Download.zip to begin the license key file download.
8. Save the license file to a USB drive.
9. Insert the USB drive into the instrument.
11. Press Execute OQ.
12. Press **Activate**.

The license is now activated and will remain valid for 2 months on the instrument. Press **Next** to advance to the OQ testing.

Execute the Operational Qualification (OQ)

Each entry throughout the OQ process is recorded in a final PDF report saved at the end of the OQ protocol. If needed at any step, press **Cancel** to return to the last screen. The qualification can only be restarted by returning to the **Activate OQ** screen, completing the full workflow, and saving the report.

Before completing the OQ testing, ensure the checkbox for **Rapid Capture** on the main screen does not have a check mark. If the box is checked, please press the box to remove the checkmark. The OQ procedure must be completed with **Rapid Capture** turned off.

1. Enter the **Protocol Execution Date**, **Lab Name**, and **Lab Address**. The instrument serial number will automatically display. Press **Next**.

2. Enter your **Contact Name**, **Contact Email Address**, and **Contact Telephone Number**. Press **Next**.

3. Select an OQ reason of **Annual requalification**, **Software update/upgrade**, or **After repair**. Press **Next**.

4. Verify pre-execution is completed by selecting **Yes** in **All Tests Completed** and entering your **User Initials** and the **Date**. Press **Next**.

5. Verify the instrument has successfully booted by selecting **Pass** or **Fail** and confirm the **Date & Time Format** are correct. Press **Next**.

6. Record if the software has been updated prior to OQ by selecting **Yes** or **No**. The instrument software version will automatically display. Press **Next**.

7. Enter the Part Number and Lot Number from the Countess™ 3/3 FL standard slide packaging. Press **Next**.
8. Perform a series of 6 counts of the standard slide (3 counts on each side). Insert side A of the standard slide and press the appropriate count number (Perform Count 1, Perform Count 2, or Perform Count 3). The instrument will automatically autofocus and take images in the background. After completing the 3 counts of side A, remove the slide and insert side B. Side B will only illuminate after removing the slide and inserting side B. Insert side B of the standard slide and press the appropriate count number (Perform Count 1, Perform Count 2, or Perform Count 3). Press Next.

![Image of Countess™ 3 FL Automated Cell Counter User Guide page 61](attachment:image.png)
9. Total concentration results are displayed (not editable). Pass or Fail is automatically selected based on the recorded count concentrations shown above the counts. Press Next.

10. The mean, standard deviation, and coefficient of variation (Cv) are displayed (not editable). Pass or Fail is automatically selected based on the number shown under Cv. Press Next.

11. Total viability results are displayed (not editable). Pass or Fail is automatically selected based on the recorded % live results shown above the counts. Press Next.

12. The mean, standard deviation, and coefficient of variation (Cv) are displayed (not editable). Pass or Fail is automatically selected based on the number shown under Cv. Press Next.

13. (For the Countess™ 3 FL instrument) Choose the appropriate light cube for testing. The OQ procedure tests fluorescent counts with a single light cube. If no cube is installed, press Install. If not required, press Not Applicable. If you have a Countess™ 3 instrument, proceed to step 18.
14. Select the appropriate light cube from the list of available cubes. Press Next.

15. Perform a series of 6 counts of the standard slide (3 counts on each side). Insert side A of the standard slide and press the appropriate count number (Perform Count 1, Perform Count 2, or Perform Count 3). The instrument will automatically autofocus and take images in the background. After completing the 3 counts of side A, remove the slide and insert side B. Side B will only illuminate after removing the slide and insert side B. Insert side B of the standard slide and press the appropriate count number (Perform Count 1, Perform Count 2, or Perform Count 3). Press Next.

16. Total concentration results are displayed (not editable). Pass or Fail is automatically selected based on the recorded count concentrations shown above the counts. Press Next.

17. The mean, standard deviation, and coefficient of variation (Cv) are displayed (not editable). Pass or Fail is automatically selected based on the number shown under Cv. Press Next.
18. Confirm the tests are successfully completed by pressing **Yes** and entering your **User Initials** and the **Date**. Press **Save**.

![Operation Qualification Completion](image1.png)

19. Enter the name for the OQ report and select the save location for the report and attachments. Press **Save**.

Note: Only the comment and signature sections of the exported PDF report are editable for verifying the report.

![Final approval signatures](image2.png)

Note: Ensure **Rapid Capture** is turned off before completing the OQ procedure.

Note: If any of the tests fail during the procedure, we recommend repeating the OQ workflow. Ensure the Countess™ 3 Standard Slide is free of debris by wiping with a lint-free wipe. If the OQ tests continue to fail, contact technical support at thermofisher.com/support.
Troubleshooting

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uneven screen illumination (screen is dark on one side, bright on the other side)</td>
<td>Light cubes misaligned.</td>
<td>Reset the light cube tray by selecting Change light cube from the Instrument Settings screen. See Appendix C, “EVOS light cubes”.</td>
</tr>
<tr>
<td>Autofocus does not focus properly</td>
<td>Debris or other material interfered with the focus.</td>
<td>Make sure there are no bubbles or debris visible on the screen that could interfere with the autofocus and make it more difficult to get the sample in the correct focal plane.</td>
</tr>
<tr>
<td>Live cells vs dead cells were difficult to distinguish.</td>
<td></td>
<td>If cells are well focused, have bright centers, and are being counted as dead, confirm that they are within the appropriate cell size range and try adjusting the settings.</td>
</tr>
<tr>
<td>Some cells appear in the image but are not included in the count</td>
<td>Brightfield or fluorescence settings were not optimal.</td>
<td>For cell count and cell viability assays performed in brightfield, adjust the size, brightness, and circularity gates for both live and dead cells to include all of the cells in the count.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For fluorescence assays, adjust the size, brightness, circularity, and fluorescence intensity gates in all available channels to include all of the cells in the count.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After including all of the cells in the count, you can narrow the count criteria, if you wish to exclude cells of a certain size or certain brightness.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When the gates are fully maximized, the CSV should indicate 0–70 for cell size and 0–255 for brightness.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Be sure channels are optimally illuminated in both brightfield and fluorescence (only in Countess™ 3 FL Automated Cell Counter) modes.</td>
</tr>
<tr>
<td>Fluorescence is extremely bright and bleeding through into other filters</td>
<td>Light intensity was not set correctly.</td>
<td>Decrease the fluorescence light intensity before counting the cells.</td>
</tr>
<tr>
<td>Observation</td>
<td>Possible cause</td>
<td>Recommended action</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Incorrect concentration for the Countess™ test beads</td>
<td>Beads were not suspended in solution or mixed correctly.</td>
<td>The beads can settle quickly in solution, which will affect the concentration reading. Vortex the bead stock on high for a full 30 seconds to resuspend, and add 10 µL of the bead suspension to 10 µL of trypan blue without delay. Pipet the bead and trypan blue mixture up and down several times to make sure it is well mixed and immediately load 10 µL into the slide.</td>
</tr>
<tr>
<td>Variable counts for the same sample of cells</td>
<td>Pipetting was done incorrectly.</td>
<td>If you are pipetting different samples from the same cell sample, the variability could be due to pipetting or mixing. Use recently calibrated pipettors and make sure that the cells are well suspended by pipetting up and down several times before adding trypan blue.</td>
</tr>
<tr>
<td>Variable counts when performing replicate counts of the same slide</td>
<td>Slide was mishandled or viewed differently multiple times.</td>
<td>If you are counting replicates of the exact same slide, visually inspect that all cells are counted correctly in the image. There may be a slightly different field of view each time a slide is inserted. Depending on the concentration and uniformity of the cells, this will cause some variability when performing replicate counts of the same slide, although it should be less than 10%. When counting fewer cells, a small field of view change for only a small number of cells can have a larger affect. Count cells at a higher concentration to reduce variability Make sure you do not shake or agitate the slide between counts.</td>
</tr>
<tr>
<td>Abnormally high percentage of dead cells or live cells counted as dead</td>
<td>Focus was not correct for the sample.</td>
<td>Ensure that the cells are focused correctly so that live cells have bright centers and dead cells are dark throughout. If the cells are not well focused and look dark on the screen, the Countess™ 3 FL cell counter will count them as dead cells. Live cells vs dead cells were difficult to distinguish. If cells are well focused, have bright centers, and are being counted as dead, confirm that they are within the appropriate cell size range and try adjusting the settings. Cells were exposed to trypan blue for too long. If cells are exposed to trypan blue for a long period of time, viability could be affected so slide should be prepared and counted fresh each time for best results.</td>
</tr>
<tr>
<td>Observation</td>
<td>Possible cause</td>
<td>Recommended action</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Abnormally high percentage of dead cells or live cells counted as dead</td>
<td>Capture settings were not optimal.</td>
<td>Gate out the debris using the size, brightness, and circularity sliders.</td>
</tr>
<tr>
<td>(continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB drive not recognized by the instrument</td>
<td>USB drive was not correctly formatted.</td>
<td>The USB drive must be FAT32 formatted to be recognized by the instrument. If it is not, reformat the USB drive to FAT32.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Try another correctly formatted USB drive.</td>
</tr>
<tr>
<td>Unable to update the Countess™ software</td>
<td>USB drive did not function properly.</td>
<td>Make sure the USB drive is formatted to FAT32. If it is not, reformat the USB drive to FAT32 before transferring the files onto the USB drive for software update.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Make sure the update file is at the top (root) of the USB drive, not in a folder or subfolder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>File cannot be renamed in any way.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>File cannot be zipped or compressed during distribution. It must be uncorrupted during transfer and have a .lft suffix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If needed, check that the USB port is functional by testing a USB mouse.</td>
</tr>
</tbody>
</table>
Technical specifications

Physical characteristics

<table>
<thead>
<tr>
<th>Instrument type</th>
<th>Benchtop cell counter and suspension cell-based assay platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument dimensions</td>
<td>9.6 (W) × 6.7 (D) × 9.4 inches (H)</td>
</tr>
<tr>
<td>Weight</td>
<td>8 lbs</td>
</tr>
<tr>
<td>Operating power</td>
<td>100–240 VAC, 1.0 A MAX</td>
</tr>
<tr>
<td>Frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Electrical input</td>
<td>12 VDC, 3 A</td>
</tr>
<tr>
<td>Installation site</td>
<td>Indoor use only, Class A Environments (i.e., non-residential or light industrial); Pollution degree 2.</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>10°–40°C (50°–104°F)</td>
</tr>
<tr>
<td>Operating humidity</td>
<td><80% (non-condensing)</td>
</tr>
</tbody>
</table>

Technical specifications

<table>
<thead>
<tr>
<th>Processing time</th>
<th><30 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample concentration range</td>
<td>1×10^4–1×10^7 cells/mL</td>
</tr>
<tr>
<td>Particle/cell diameter range</td>
<td>4–60 µm</td>
</tr>
<tr>
<td>Required sample volume</td>
<td>10 µL</td>
</tr>
<tr>
<td>Firmware</td>
<td>Countess™ Automated Cell Counting Platform Software</td>
</tr>
<tr>
<td>USB drive</td>
<td>32 Gigabytes (FAT32-, exFAT-, or NTSF-compatible)</td>
</tr>
</tbody>
</table>

Optics

<table>
<thead>
<tr>
<th>Optics</th>
<th>3 channels (brightfield and 2 slots for EVOS™ LED light cubes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
<td>5 megapixels, 2.5× Optical Magnification</td>
</tr>
</tbody>
</table>
Analysis slide

<table>
<thead>
<tr>
<th>Material</th>
<th>Poly(methyl methacrylate) (PMMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>25 mm (W) × 75 mm (D) × 1.7 mm (H)</td>
</tr>
<tr>
<td>Chamber volume</td>
<td>10 µL</td>
</tr>
</tbody>
</table>
LED illumination

The Countess™ 3 FL Automated Cell Counter utilizes an adjustable intensity LED light source provided by the proprietary, user-interchangeable LED light cube (see “EVOS™ light cubes” on page 70). Because the LED light source is as close as possible to the objective, the number of optical elements in the channel is minimized. High-intensity illumination over a short channel increases the efficiency of fluorophore excitation, providing better detection of weak fluorescent signals.

EVOS™ light cubes

Each user-interchangeable, auto-configured EVOS™ light cube contains an LED, collimating optics, and filters. In addition to the brightfield channel dedicated to cell count and cell viability assays using trypan blue, the Countess™ 3 FL Automated Cell Counter can accommodate two fluorescent light cubes for multiple-fluorescence research applications.

The following table lists some of the common fluorescent and specialty EVOS™ light cubes available from Thermo Fisher Scientific. For a complete list, go to www.thermofisher.com/evoslightcubes or contact Technical Support. For instructions on changing the LED light cubes, see Chapter 10, “Change EVOS™ light cubes”.

<table>
<thead>
<tr>
<th>Light Cube</th>
<th>Dyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAPI</td>
<td>DAPI, Hoechst™, BFP</td>
</tr>
<tr>
<td>TagBFP</td>
<td>TagBFP</td>
</tr>
<tr>
<td>CFP</td>
<td>ECFP, Lucifer Yellow, Evans Blue</td>
</tr>
<tr>
<td>GFP</td>
<td>GFP, Alexa Fluor™ 488, SYBR GREEN™, FITC</td>
</tr>
<tr>
<td>YFP</td>
<td>EYFP, acridine orange + DNA</td>
</tr>
</tbody>
</table>
(continued)

<table>
<thead>
<tr>
<th>Light Cube</th>
<th>Dyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFP</td>
<td>RFP, Alexa Fluor™ 546, Alexa Fluor™ 555, Alexa Fluor™ 568, Cy3™, MitoTracker™ Orange, Rhodamine Red, DsRed</td>
</tr>
<tr>
<td>Texas Red</td>
<td>Texas Red™, Alexa Fluor™ 568, Alexa Fluor™ 594, MitoTracker™ Red, mCherry, Cy3.5™</td>
</tr>
<tr>
<td>Cy5</td>
<td>Cy5™, Alexa Fluor™ 647, Alexa Fluor™ 660, DRAQ5™</td>
</tr>
<tr>
<td>Cy5.5</td>
<td>Cy5.5™, Alexa Fluor™ 660, Alexa Fluor™ 680, Alexa Fluor™ 700</td>
</tr>
<tr>
<td>Cy7</td>
<td>Cy7™, IRDye 800CW</td>
</tr>
</tbody>
</table>

Note: The EVOS™ light cubes are available only for the Countess™ 3 FL Automated Cell Counter. The Countess™ 3 Automated Cell Counter uses only brightfield illumination and does not support the EVOS™ light cubes.
Countess™ 3 FL Automated Cell Counter and accessories

The following Countess™ 3 FL instruments and instrument accessories are available from Thermo Fisher Scientific. For more information, visit www.thermofisher.com or contact Technical Support.

<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countess™ 3 FL Automated Cell Counter</td>
<td>1 each</td>
<td>AMQAF2000</td>
</tr>
<tr>
<td>Countess™ 3 Power Adapter with four adaptor cords</td>
<td>1 each</td>
<td>A48207</td>
</tr>
<tr>
<td>Countess™ 3 USB Drive</td>
<td>1 each</td>
<td>A26774</td>
</tr>
<tr>
<td>Countess™ 3 FL Light Cube Removal Tool</td>
<td>1 each</td>
<td>AMEP-4747</td>
</tr>
<tr>
<td>Countess™ 3 FL Disposable Slide Holder</td>
<td>1 each</td>
<td>AMEP-4745</td>
</tr>
<tr>
<td>Countess™ 3 FL Reusable Slide Holder</td>
<td>1 each</td>
<td>A48208</td>
</tr>
</tbody>
</table>

Accessory products

The following products can be used with the Countess™ 3/3 FL Automated Cell Counters and are available separately from Thermo Fisher Scientific. For more information, visit www.thermofisher.com or contact Technical Support.

<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countess™ Cell Counting Chamber Slides, 50 Slides (100 counts)</td>
<td>1 box[1]</td>
<td>C10228</td>
</tr>
<tr>
<td>Countess™ Cell Counting Chamber Slides, 500 Slides (1000 Counts)</td>
<td>10 boxes[1]</td>
<td>C10312</td>
</tr>
<tr>
<td>Countess™ Cell Counting Chamber Slides, 1250 Slides (2500 Counts)</td>
<td>25 boxes[1]</td>
<td>C10313</td>
</tr>
<tr>
<td>Countess™ Cell Counting Chamber Slides, 2500 Slides (5000 Counts)</td>
<td>50 boxes[1]</td>
<td>C10314</td>
</tr>
<tr>
<td>Countess™ Cell Counting Chamber Slides, 5000 Slides (10,000 Counts)</td>
<td>100 boxes[1]</td>
<td>C10315</td>
</tr>
<tr>
<td>Countess™ Reusable Slide</td>
<td>1 each</td>
<td>A25750</td>
</tr>
</tbody>
</table>
(continued)

<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countess™ Test Beads (1 \times 10^6) beads/mL</td>
<td>1 mL</td>
<td>C10284</td>
</tr>
<tr>
<td>Trypan blue stain (0.4 %)</td>
<td>2 × 1 mL</td>
<td>T10282</td>
</tr>
</tbody>
</table>

[1] Each box of Countess™ Cell Counting Chamber Slides contains 50 slides and 2 × 1 mL vials of trypan blue (0.4%), sufficient for 100 counts.
Overview

A comma-separated values (CSV) file stores tabular data (numbers and text) in plain-text form. Plain text means that the file is a sequence of characters, with no data that has to be interpreted as binary numbers. A CSV file can be opened with any third party software or spreadsheet program. The table below describes the categories of the Countess™ 3 FL data saved as a CSV file and opened with a spreadsheet program.

<table>
<thead>
<tr>
<th>Category</th>
<th>Column</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>A</td>
<td>Count ID</td>
<td>ID number for current count</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Session ID</td>
<td>ID number for current session</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Sample name</td>
<td>Name of sample</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Date & Time</td>
<td>Date and time of sample run</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>Type</td>
<td>BF-Brightfield or FL-Fluorescence</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>Trypan blue corrected</td>
<td>Sample with trypan blue correction applied</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>Pre-Dilution corrected</td>
<td>Sample with pre-dilution correction applied</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Total concentration</td>
<td>Concentration of the entire sample</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Total cells counted</td>
<td>Total number of cells counted in the sample</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>Live concentration</td>
<td>Concentration of just the "live" portion of the sample</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>Live cells counted</td>
<td>"Live" cells counted in sample</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>Dead concentration</td>
<td>Concentration of just the "dead" portion of the sample</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>Dead cells counted</td>
<td>"Dead" cells counted in sample</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Viability (%)</td>
<td>Percent viability of the sample based on trypan blue staining</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>Live average size (µm)</td>
<td>Average size of "live" cells in microns</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>Dead average size (µm)</td>
<td>Average size of "dead" cells in microns</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>Q</td>
<td>Cube 1 name</td>
<td>EVOS™ light cube name in the first (top) position</td>
</tr>
</tbody>
</table>
Appendix E CSV file format definition

Overview

<table>
<thead>
<tr>
<th>Category</th>
<th>Column</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence</td>
<td>R</td>
<td>Cube 1 concentration</td>
<td>Concentration of cells showing fluorescence in the first cube position</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>Cube 1 (%)</td>
<td>Percentage of the total cells in brightfield that show fluorescence in the first cube position</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>Cube 1 cells counted</td>
<td>Total number of cells counted in the first cube position</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>Cube 2 name</td>
<td>EVOS™ light cube name in the second (bottom) position</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>Cube 2 concentration</td>
<td>Concentration of cells showing fluorescence in the second cube position</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Cube 2 (%)</td>
<td>Percentage of the total cells in brightfield that show fluorescence in the second cube position</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Cube 2 cells counted</td>
<td>Total number of cells counted in the second cube position</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Cube 1+2 concentration</td>
<td>Concentration of cells showing fluorescence in the first and second cube positions combined</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>Cube 1+2 (%)</td>
<td>Percentage of the total cells in brightfield that show fluorescence in the first and second cube positions combined</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Cube 1+2 cells counted</td>
<td>Total number of cells counted in the first and second cube positions combined</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>Cube 1 average Size</td>
<td>Average size in microns of cells counted using the first (top) cube</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(µm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>Cube 2 average Size</td>
<td>Average size in microns of cells counted using the second (bottom) cube</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(µm)</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>AD</td>
<td>Focus value</td>
<td>Focal position number</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>Focus motor value</td>
<td>Motor position in relation to focal position number</td>
</tr>
<tr>
<td>Trypan Blue/Brightfield</td>
<td>AF</td>
<td>BF light intensity</td>
<td>Brightfield light intensity value from 0-100%</td>
</tr>
<tr>
<td></td>
<td>AG</td>
<td>BF LED intensity</td>
<td>LED intensity in brightfield mode</td>
</tr>
<tr>
<td></td>
<td>AH</td>
<td>Live size min</td>
<td>Minimum size of "live" cells in microns</td>
</tr>
<tr>
<td></td>
<td>AI</td>
<td>Live size max</td>
<td>Maximum size of "live" cells in microns</td>
</tr>
<tr>
<td></td>
<td>AJ</td>
<td>Live brightness min</td>
<td>"Live" adjustment slider value for minimum brightness</td>
</tr>
<tr>
<td></td>
<td>AK</td>
<td>Live brightness max</td>
<td>"Live" adjustment slider value for maximum brightness</td>
</tr>
</tbody>
</table>
Trypan Blue/Brightfield

<table>
<thead>
<tr>
<th>Category</th>
<th>Column</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AL</td>
<td>Live circularity min</td>
<td>"Live" adjustment slider value for minimum circularity</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td>Live circularity max</td>
<td>"Live" adjustment slider value for minimum circularity</td>
</tr>
<tr>
<td></td>
<td>AN</td>
<td>Dead size min</td>
<td>Minimum size of "dead" cells in microns</td>
</tr>
<tr>
<td></td>
<td>AO</td>
<td>Dead size max</td>
<td>Maximum size of "dead" cells in microns</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>Dead brightness min</td>
<td>"Dead" adjustment slider value for minimum brightness</td>
</tr>
<tr>
<td></td>
<td>AQ</td>
<td>Dead brightness max</td>
<td>"Dead" adjustment slider value for maximum brightness</td>
</tr>
<tr>
<td></td>
<td>AR</td>
<td>Dead circularity min</td>
<td>"Dead" adjustment slider value for minimum circularity</td>
</tr>
<tr>
<td></td>
<td>AS</td>
<td>Dead circularity max</td>
<td>"Dead" adjustment slider value for maximum circularity</td>
</tr>
</tbody>
</table>

Fluorescence

<table>
<thead>
<tr>
<th>Category</th>
<th>Column</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AT</td>
<td>Cube 1 light intensity</td>
<td>First (top) light cube light intensity value from 0-100%</td>
</tr>
<tr>
<td></td>
<td>AU</td>
<td>Cube 1 LED intensity</td>
<td>LED intensity of first (top) light cube</td>
</tr>
<tr>
<td></td>
<td>AV</td>
<td>Cube 2 light intensity</td>
<td>Second (bottom) light cube light intensity value from 0-100%</td>
</tr>
<tr>
<td></td>
<td>AW</td>
<td>Cube 2 LED intensity</td>
<td>LED intensity of second (bottom) light cube</td>
</tr>
<tr>
<td></td>
<td>AX</td>
<td>BF size min</td>
<td>Minimum size of "brightfield" cells in microns</td>
</tr>
<tr>
<td></td>
<td>AY</td>
<td>BF size max</td>
<td>Maximum size of "brightfield" cells in microns</td>
</tr>
<tr>
<td></td>
<td>AZ</td>
<td>BF brightness min</td>
<td>"Brightfield" adjustment slider value for minimum brightness</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>BF brightness max</td>
<td>"Brightfield" adjustment slider value for maximum brightness</td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>BF circularity min</td>
<td>"Brightfield" adjustment slider value for minimum circularity</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>BF circularity max</td>
<td>"Brightfield" adjustment slider value for maximum circularity</td>
</tr>
<tr>
<td></td>
<td>BD</td>
<td>Cube 1 brightness min</td>
<td>First (top) light cube adjustment slider value for minimum brightness</td>
</tr>
<tr>
<td></td>
<td>BE</td>
<td>Cube 1 brightness max</td>
<td>First (top) light cube adjustment slider value for maximum brightness</td>
</tr>
<tr>
<td></td>
<td>BF</td>
<td>Cube 2 brightness min</td>
<td>Second (bottom) light cube adjustment slider value for minimum brightness</td>
</tr>
</tbody>
</table>
(continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Column</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence</td>
<td>BG</td>
<td>Cube 2 brightness max</td>
<td>Second (bottom) light cube adjustment slider value for maximum brightness</td>
</tr>
<tr>
<td>General</td>
<td>BH</td>
<td>Template name</td>
<td>Template used for count</td>
</tr>
<tr>
<td></td>
<td>BI</td>
<td>Software revision</td>
<td>Current software version used for count</td>
</tr>
</tbody>
</table>
WARNING! GENERAL SAFETY. Using this product in a manner not specified in the user documentation may result in personal injury or damage to the instrument or device. Ensure that anyone using this product has received instructions in general safety practices for laboratories and the safety information provided in this document.

- Before using an instrument or device, read and understand the safety information provided in the user documentation provided by the manufacturer of the instrument or device.
- Before handling chemicals, read and understand all applicable Safety Data Sheets (SDSs) and use appropriate personal protective equipment (gloves, gowns, eye protection, and so on). To obtain SDSs, visit thermofisher.com/support.
WARNING! GENERAL CHEMICAL HANDLING. To minimize hazards, ensure laboratory personnel read and practice the general safety guidelines for chemical usage, storage, and waste provided below. Consult the relevant SDS for specific precautions and instructions:

- Read and understand the Safety Data Sheets (SDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. To obtain SDSs, see the "Documentation and Support" section in this document.
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing).
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with sufficient ventilation (for example, fume hood).
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer cleanup procedures as recommended in the SDS.
- Handle chemical wastes in a fume hood.
- Ensure use of primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- After emptying a waste container, seal it with the cap provided.
- Characterize (by analysis if needed) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure that the waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.
- IMPORTANT! Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

WARNING! HAZARDOUS WASTE (from instruments). Waste produced by the instrument is potentially hazardous. Follow the guidelines noted in the preceding General Chemical Handling warning.

WARNING! 4L Reagent and Waste Bottle Safety. Four-liter reagent and waste bottles can crack and leak. Each 4-liter bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position.
Biological hazard safety

WARNING! Potential Biohazard. Depending on the samples used on this instrument, the surface may be considered a biohazard. Use appropriate decontamination methods when working with biohazards.

WARNING! BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Conduct all work in properly equipped facilities with the appropriate safety equipment (for example, physical containment devices). Safety equipment can also include items for personal protection, such as gloves, coats, gowns, shoe covers, boots, respirators, face shields, safety glasses, or goggles. Individuals should be trained according to applicable regulatory and company/institution requirements before working with potentially biohazardous materials. Follow all applicable local, state/provincial, and/or national regulations. The following references provide general guidelines when handling biological samples in laboratory environment.

- U.S. Department of Health and Human Services, Biosafety in Microbiological and Biomedical Laboratories (BMBL), 6th Edition, HHS Publication No. (CDC) 300859, Revised June 2020
 www.who.int/publications/i/item/9789240011311
Customer and technical support

Visit thermofisher.com/support for the latest service and support information.

• Worldwide contact telephone numbers
• Product support information
 – Product FAQs
 – Software, patches, and updates
 – Training for many applications and instruments
• Order and web support
• Product documentation
 – User guides, manuals, and protocols
 – Certificates of Analysis
 – Safety Data Sheets (SDSs; also known as MSDSs)

Note: For SDSs for reagents and chemicals from other manufacturers, contact the manufacturer.

Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies’ General Terms and Conditions of Sale at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have any questions, please contact Life Technologies at www.thermofisher.com/support.