Yfiler[™] Plus PCR Amplification Kit USER GUIDE

Catalog Numbers 4484678, 4482730

Publication Number MAN0030230 Revision A

For Research, Forensic, or Paternity Use Only. Not for use in diagnostic procedures.

Life Technologies Ltd | 7 Kingsland Grange | Woolston, Warrington WA1 4SR | United Kingdom For descriptions of symbols on product labels or product documents, go to thermofisher.com/symbols-definition.

Revision	Date	Description		
A	22 April 2025	New document for the Yfiler [™] Plus PCR Amplification Kit; replaces Pub. No. 4485610. The following changes were made:		
		• Storage conditions were updated (see "Contents and storage" on page 14).		
		 Compatible instruments, compatible software, and materials required were updated (throughout the document). 		
		 Copy edits and formatting changes were made to align with current documentation style (throughout the document). 		
D	10 January 2019	Throughout the user guide, updates were made to DYS387S1 to DYF387S1.		
		 In "Contents and storage" on page 14, the number of primer set tubes was updated to 2 tubes for Cat. No. 4484678. 		
		 In "Extracted DNA: Perform PCR" on page 22, the cycle number recommendation was updated to "CYCLE (Direct Amplification 26–29) (Extracted DNA 30)". 		
		 The following stutter filter values were updated to reflect rounding used in the analysis files: In Table 4 on page 76, 2 bp stutter filters for DYS19 and DYS481; minus stutter filter for DYS391. 		
		 In Table 5 on page 77, plus stutter filters for DYS635, DYS392, DYS570. 		
С	27 December	The following information was added to Chapter 5:		
	2010	Example electropherograms of DYS437 artifacts		
		• Table of % minus and % plus stutter that includes minimum, maximum, and mean stutter values		
		Non-technical changes: content was reorganized.		
В	31 October 2014	Add Chapter 5, Experiments and Results.		
А	31 July 2014	New document for the Yfiler [™] Plus PCR Amplification Kit.		

Revision history: MAN0030230 A (English)

The information in this guide is subject to change without notice.

DISCLAIMER: TO THE EXTENT ALLOWED BY LAW, THERMO FISHER SCIENTIFIC INC. AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Important Licensing Information: This product may be covered by one or more Limited Use Label Licenses. By use of this product, you accept the terms and conditions of all applicable Limited Use Label Licenses.

Trademarks: All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. FTA is a trademark of Whatman Limited. Harris Micro-Punch is a trademark of Harris, Joel S. TA Shunderson Communications.

©2014-2025 Thermo Fisher Scientific Inc. All rights reserved.

Contents

CHAPTER 1 Product information	. 8
Product description	. 8
Single-source sample types supported	8
About the primers	9
Dyes used in the kit	. 9
Loci amplified by the kit	10
Standards and controls that are required	11
Contents and storage	. 14
Required materials not supplied	15
Instruments and software compatibility	16
Workflows	17
CHAPTER 2 Extracted DNA: Perform PCR	19
Validated DNA amounts and PCR cycles	. 19
DNA quantification	19
Importance of DNA quantification before STR analysis	19
Effect of DNA quantity on results	20
Methods of quantifying DNA	20
Before you begin	. 21
(Optional) Prepare low-TE buffer	21
(Before first use of the kit) Thaw reagents	21
Prepare the amplification kit reactions	21
Extracted DNA: Perform PCR	. 22
CHAPTER 3 Direct amplification: Perform PCR	24
(Before first use of the kit) Optimize PCR cycle number	. 24
Procedural guidelines when optimizing PCR cycle number	24
Select samples and prepare plates	. 24
Determine optimum PCR conditions	25
(Before first use of the kit) Thaw reagents	25
Direct amplification: Treated and untreated paper substrates	26
Sample preparation guidelines: Treated or untreated paper substrate	. 26
(Optional) Prepare low-TE buffer	27
Prepare the amplification kit reactions: Treated or untreated paper substrates	28

Contents

Direct amplification: Swab substrates	. 29
Sample preparation guidelines: Swab substrate	29
Prepare the sample lysate: Room temperature	. 29
Prepare the sample lysate: Heat protocol	30
Prepare the amplification kit reactions: Swab substrate	30
Store the sample lysate	. 32
Direct amplification: Perform PCR	32
CHAPTER 4 Perform electrophoresis	33
Allelic ladder requirements for electrophoresis	33
(Before first use of the kit) Set up the capillary electrophoresis instrument	34
Data collection software setup	34
Perform spectral calibration	35
Prepare samples for electrophoresis and start the run	37
CHAPTER 5 Analyze data with GeneMapper ^{M} <i>ID-X</i> Software	39
Overview of GeneMapper [™] ID-X Software	39
Allelic ladder requirements for data analysis	40
File names and versions used in this section	40
Set up the GeneMapper [™] <i>ID-X</i> Software for analysis (before first use of the kit)	41
Workflow	. 41
Check panel, bin, and stutter file versions on your computer	41
(If needed) Download newer versions of panel, bin, and stutter files	. 42
(If needed) Import panels, bins, and marker stutter	42
(Optional) Define custom table or plot settings	. 46
Create an analysis method	47
Create an analysis method	. 47
Enter Analysis Method settings	47
(If needed) Create a size standard definition file	55
About the GS600_LIZ_(60-460) size standard definition file	. 56
Create a size standard definition file	. 56
Analyze and edit sample files with GeneMapper [™] <i>ID-X</i> Software	. 58
Examine or edit a project	. 58
For more information on using the GeneMapper [™] <i>ID-X</i> Software	. 58
CHAPTER 6 Experiments and results	59
Importance of validation	59
Experiment conditions	59
Laboratory requirements for internal validation	. 60

	Developmental validation	60
	SWGDAM guideline 2.2.1	60
	SWGDAM guideline 3.9.2	60
	PCR components	60
	Thermal cycling temperatures	62
	Accuracy, precision, and reproducibility	64
	SWGDAM guideline 3.5	. 64
	Accuracy observation	. 64
	Precision and size window description	65
	Precision and size window observation	65
	Extra peaks in the electropherogram	65
	Causes of extra peaks	65
	Extra peaks: Stutter	66
	Extra peaks: Addition of 3' A nucleotide	78
	Extra peaks: Artifacts	79
	Characterization of loci	9.1
,	SWGDAM quideline 3.1	84 84
	Loci in this kit	8/
		84 84
		85
		85
		00
		85
	SwGDAW Guideline 3.2	85
		85
	Sensitivity	86
	SWGDAM guideline 3.3	. 86
	Effect of DNA quantity on results	86
	Sample collection factors that can affect DNA quantity	87
	Sensitivity observation	87
;	Stability	88
	SWGDAM guideline 3.4	. 88
	Lack of amplification of some loci	88
	Degraded DNA	89
	Effect of inhibitors-humic acid	90
	Mixture studies	91
	SWGDAM guideline 3.8	. 91
	Mixture study overview	91
	Male/female mixture studies	91
	Male/male mixture studies	92
	Population data	94
	SWGDAM YSTR guideline 10.1	94
	Population data overview	94
	Population samples used in these studies	94

Ge	ne diversity values	
Ana	alyzing the population data	
WILLIATIO	1 rate	
APPENDIX A	Table of Precision Results	
Table of	typical precision results	97
APPENDIX B	Troubleshooting	111
APPENDIX C	Vaterials required but not supplied	114
Sample Ext Tre Un Sw Thermal Pro Ver Capillar Sec 350 Analysis Ge	preparation required materials	114 114 114 114 115 115 115 115 116 116 116 116 116 116 117 118 118 118
Miscella Pla Lat	neous required materials tes and tubes	119 119 120
APPENDIX D	⊃late layouts	121
Example Example	e PCR plate layout	121 121
APPENDIX E	PCR work areas	122
Work ar PCR set Amplifie	ea setup and lab design up work area materials d DNA work area	122 122 123
APPENDIX F	Safety	124
Chemic Biologic	al safetyal hazard safety	125 126

	APPENDIX G	Documentation and support	127
	Relate	d documentation	. 127
	Custor	ner and technical support	. 129
	Limited	d product warranty	129
Ref	erences		130

Product information

Product description	. 8
Contents and storage	14
Required materials not supplied	15
Instruments and software compatibility	16
Workflows	17

IMPORTANT! Before using this product, read and understand the information in the "Safety" appendix in this document.

Product description

The Yfiler[™] Plus PCR Amplification Kit is a 6-dye, short tandem repeat (STR) multiplex assay for the amplification of human genomic DNA. The kit is optimized for multiple male-specific sample types such as male-male, male-female mixtures.

The kit amplifies 27 Y-STR loci: DYS576, DYS389I, DYS635, DYS389II, DYS627, DYS460, DYS458, DYS19, YGATAH4, DYS448, DYS391, DYS456, DYS390, DYS438, DYS392, DYS518, DYS570, DYS437, DYS385 a/b, DYS449, DYS393, DYS439, DYS481, DYF387S1 a/b, DYS533

The Yfiler[™] Plus kit uses the same improved process for synthesis and purification of the amplification primers that were previously developed for other next-generation Thermo Fisher Scientific STR chemistries. The improved amplification primers deliver clean electrophoretic backgrounds that help interpretation.

Single-source sample types supported

The Yfiler[™] Plus kit is optimized to allow direct amplification from the following types of single-source samples without the need for sample purification:

- Blood and buccal samples on treated paper substrates.
- Blood samples collected on untreated paper substrates and treated with Prep-n-Go[™] Buffer.
- Buccal samples collected on swab substrates and treated with Prep-n-Go[™] Buffer.

About the primers

Non-nucleotide linkers are used in primer synthesis for the following loci: DYS389I/II, DYS635, DYS627, DYS19, YGATAH4, DYS448, DYS391, DYS390, DYS438, DYS392, DYS518, DYS437, and DYS449.

For these primers, non-nucleotide linkers are placed between the primers and the fluorescent dye during oligonucleotide synthesis (Butler 2005, Grossman *et al.*, 1994). Non-nucleotide linkers enable reproducible positioning of the alleles to facilitate interlocus spacing. The combination of a 6-dye fluorescent system and the use of non-nucleotide linkers allows simultaneous amplification and efficient separation of the 27 Y-STR loci during automated DNA fragment analysis.

Dyes used in the kit

Dye	Color	Label
6-FAM™	Blue	Samples, allelic ladders, and controls
VIC™	Green	
NED™	Yellow	
TAZ™	Red	
SID™	Purple	
LIZ™	Orange	GeneScan™ 600 LIZ™ Size Standard v2.0

Loci amplified by the kit

Locus designation	tion Alleles in the allelic ladder		Alleles in DNA Control 007
DYS576	10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25	6-FAM™	19
DYS389I	DYS389I 9, 10, 11, 12, 13, 14, 15, 16, 17		
DYS635	15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30		24
DYS389II	24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35		29
DYS627	11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27		21
DYS460	7, 8, 9, 10, 11, 12, 13, 14	VIC™	11
DYS458	11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24		17
DYS19	9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19		15
YGATAH4	8, 9, 10, 11, 12, 13, 14, 15		13
DYS448	14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24		19
DYS391	5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16		11
DYS456	10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24	NED™	15
DYS390	17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29		24
DYS438	6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16		12
DYS392	4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20		13
DYS518	32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49		37
DYS570	10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26	TAZ™	17
DYS437	10, 11, 12, 13, 14, 15, 16, 17, 18		15
DYS385 a/b	DYS385 a/b 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28		11, 14
DYS449	22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40		30
DYS393	7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18	SID™	13
DYS439	DYS439 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17		12
DYS481	17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32		22
DYF387S1 a/b	DYF387S1 a/b 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44		35, 37
DYS533	7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17		13

Standards and controls that are required

The Yfiler[™] Plus kit requires the following standards and controls for PCR amplification, PCR product sizing, and genotyping:

Item	Description	Included in the kit
DNA Control 007	Positive control. Used to evaluate amplification efficiency and to evaluate STR genotyping using the kit allelic ladder. See "DNA Control 007 profile" on page 12.	Yes
Yfiler™ Plus Allelic Ladder	Developed for accurate characterization of the alleles amplified in the kit. The allelic ladder allows automatic genotyping of most of the reported alleles for the loci in the kit. See "Loci amplified by the kit" on page 10 and "Allelic ladder profile" on page 13.	Yes
GeneScan [™] 600 LlZ [™] Size Standard v2.0 (Cat. No. 4408399)	Used for obtaining sizing results. This standard, which has been evaluated as an internal size standard, yields precise sizing results for PCR products.	No (order separately)

Figure 1 DNA Control 007 (1 ng) amplified with the Yfiler[™] Plus kit and analyzed on a 3500xL Genetic Analyzer (Y-axis scale 0–12,000 RFU).

Allelic ladder profile

Figure 2 GeneMapper[™] *ID-X* Software plot of the Yfiler[™] Plus Allelic Ladder (Y-axis scale 0–6,000 RFU).

Yfiler™ Plus PCR Amplification Kit User Guide

Contents and storage

The Yfiler[™] Plus kit contains sufficient quantities of the reagents for 100 (Cat. No. 4484678) or 500 (Cat. No. 4482730) amplification reactions at 25 µL/reaction.

IMPORTANT! The fluorescent dyes attached to the primers are light-sensitive. Protect the primer set and allelic ladder from light when not in use.

IMPORTANT! The allelic ladder contains PCR products that should not be amplified. To avoid contamination, store the allelic ladder separately from the other kit components and unamplified DNA.

Note: If there is more than one tube or bottle for a single reagent, thaw only the number of tubes or bottles required for the current number of reactions.

IMPORTANT! Do not refreeze kit components after thawing.

Note: For recommendations on kit handling, go to **thermofisher.com**, then search for *Technical Note: Handling STR Kits and Ladder Decontamination*, or contact your local Human Identification representative.

		Amo		
Item	Description	100 reactions (Cat. No. 4484678)	500 reactions (Cat. No. 4482730)	Storage ^[1]
Yfiler™ Plus Master Mix	Contains enzyme, salts, dNTPs, bovine serum albumin, and 0.05% sodium azide in buffer and salt.	2 × 0.5 mL	4 × 1.25 mL	-25°C to -15°C on receipt. 2-8°C after first use, up to the expiration date stated on the kit.
DNA Control 007	Contains 2 ng/µL human male genomic DNA in 0.05% sodium azide and buffer. ^[2] See "DNA Control 007 profile" on page 12.	1 × 0.05 mL	2 × 0.05 mL	

(continued)

		Amo		
Item	Description	100 reactions (Cat. No. 4484678)	500 reactions (Cat. No. 4482730)	Storage ^[1]
Yfiler™ Plus	Contains forward and	2 × 0.25 mL	2 × 1.25 mL	–25°C to –15°C on receipt.
Primer Set	reverse primers to amplify human DNA targets.			2–8°C after first use, up to the expiration date stated on the kit.
Yfiler™ Plus Allelic	Contains amplified alleles.	2 × 0.025 mL	2 × 0.05 mL	Store protected from light.
Ladder	See "Allelic ladder profile" on page 13.			

^[1] See packaging for expiration date. Do not use expired product.

[2] DNA Control 007 is included at a concentration that is appropriate for use as an amplification control (that is, to provide confirmation that the kit reagents can generate a profile of expected genotype). It is not designed for use as a DNA quantification control. If you quantify aliquots of DNA Control 007, the concentration may differ from the labeled concentration.

Required materials not supplied

See Appendix C, "Materials required but not supplied".

Instruments and software compatibility

Note: Compatible instruments and software that have been discontinued are not listed in this user guide.

Thermal cyclers

- HID VeritiPro[™] Thermal Cycler, 96-well
- ProFlex[™] 96-well PCR System
- ProFlex[™] 2 × 96-well PCR System
- ProFlex[™] 3 × 32-Well PCR System

Genetic analyzers and data collection software

Genetic analyzer	Data collection software	
SeqStudio [™] Flex Series Genetic Analyzer for Human Identification	SeqStudio™ Flex Series Instrument Software v1.1.1	
SeqStudio™ Genetic Analyzer for HID	SeqStudio [™] Data Collection Software v1.2.5	
	SeqStudio [™] Data Collection Software v1.2.4	
	SeqStudio [™] Data Collection Software v1.2.1	
3500 Series Genetic Analyzer for Human	3500 Series HID Data Collection Software v4.0.1	
Identification	3500 Series Data Collection Software 4 (Windows™ 10 operating system)	

Analysis software

Genetic analyzer	Analysis software
SeqStudio [™] Flex Series Genetic Analyzer for Human Identification	GeneMapper™ <i>ID-X</i> Software v1.7.2 or later
SeqStudio™ Genetic Analyzer for HID	GeneMapper™ <i>ID-X</i> Software v1.6 or later
3500 Series Genetic Analyzer for Human Identification	GeneMapper™ <i>ID-X</i> Software v1.5 or later

For more information

- For the instruments and software used during the kit validation, see Chapter 6, "Experiments and results".
- For testing information on specific platforms, see the instrument or software user documentation.
- For ordering information, see Appendix C, "Materials required but not supplied".

Workflows

Process casework (extracted DNA) samples with the Yfiler[™] Plus PCR Amplification Kit

Extract and quantify DNA

- 1. Extract DNA-Go to: www.thermofisher.com/hid-sampleprep
- 2. Quantify DNA-See "DNA quantification" on page 19

Perform PCR

- 1. "Prepare the amplification kit reactions" on page 21
- 2. "Extracted DNA: Perform PCR" on page 22

Perform capillary electrophoresis

- 1. "(Before first use of the kit) Set up the capillary electrophoresis instrument" on page 34
- 2. "Prepare samples for electrophoresis and start the run" on page 37)

Analyze data

- 1. "Set up the GeneMapper™ ID-X Software for analysis (before first use of the kit)" on page 41
- 2. "Create an analysis method" on page 47
- 3. "(If needed) Create a size standard definition file" on page 55
- 4. "Analyze and edit sample files with GeneMapper™ ID-X Software" on page 58
- 5. "Examine or edit a project" on page 58

Process database (direct amplification) samples with the Yfiler[™] Plus PCR Amplification Kit

Perform PCR

- 1. "Direct amplification: Treated and untreated paper substrates" on page 26, *or* "Direct amplification: Swab substrates" on page 29
- 2. "Direct amplification: Perform PCR" on page 32

Perform capillary electrophoresis

- 1. "(Before first use of the kit) Set up the capillary electrophoresis instrument" on page 34
- 2. "Prepare samples for electrophoresis and start the run" on page 37)

Analyze data

- 1. "Set up the GeneMapper™ ID-X Software for analysis (before first use of the kit)" on page 41
- 2. "Create an analysis method" on page 47
- 3. "(If needed) Create a size standard definition file" on page 55
- 4. "Analyze and edit sample files with GeneMapper™ ID-X Software" on page 58
- 5. "Examine or edit a project" on page 58

Extracted DNA: Perform PCR

Validated DNA amounts and PCR cycles	19
DNA quantification	19
Before you begin	21
Prepare the amplification kit reactions	21
Extracted DNA: Perform PCR	22

Validated DNA amounts and PCR cycles

The kit is validated for use with \leq 1 ng of DNA for 30 PCR cycles. The DNA input volume is 10 µL, for a total reaction volume of 25 µL.

DNA quantification

Importance of DNA quantification before STR analysis

DNA quantification can be used to determine the following:

- If the sample contains sufficient human DNA and/or human male DNA to proceed with short tandem repeat (STR) amplification.
- (When using the Quantifiler[™] Trio DNA Quantification Kit) The relative quantities of human male and female DNA in a sample. Relative quantities can help you select the appropriate STR chemistry.
- The amount of sample to use in STR analysis applications.
- If PCR inhibitors are present in a sample. If inhibitors are present, the sample may require additional purification before proceeding to STR analysis.
- The DNA quality, in regards to the inhibition level and the DNA degradation level. DNA quality can help you determine the likelihood of recovery of STR loci with larger amplicon sizes.

Note: Highly degraded samples that cannot be recovered by STR analysis with capillary electrophoresis can be analyzed with the Precision ID NGS System and Panels. Optimized for degraded samples, the Precision ID Identity Panel enables discrimination of individuals similar to STR genotype match probabilities. The Precision ID Ancestry Panel infers biogeographical ancestry for investigative leads.

Effect of DNA quantity on results

If too much DNA is added to the PCR reaction, the increased amount of PCR product that is generated can result in the following:

- Fluorescence intensity that exceeds the linear dynamic range for detection by the capillary electrophoresis instrument ("off-scale" data). Off-scale data are a problem because:
 - Quantification (peak height and area) for off-scale peaks is not accurate. For example, an allele
 peak that is off-scale can cause a corresponding stutter peak to appear higher in relative
 intensity, therefore increasing the calculated percent stutter.
 - Multicomponent analysis of off-scale data is not accurate. This inaccuracy results in poor spectral separation ("pull-up").
- Incomplete +A nucleotide addition.

To address these problems, rerun the amplification reaction using less DNA.

If too little DNA is added to the PCR reaction, the total number of allele copies added to the PCR reaction could be extremely low. Unbalanced amplification of the alleles can occur because of stochastic fluctuation.

Methods of quantifying DNA

Kit	Detects	How it works
Quantifiler™ HP DNA Quantification Kit (Cat. No. 4482911)	 Total human DNA (two targets – one small amplicon and one larger amplicon) Degraded DNA 	 Uses 5' nuclease assays with multiple-copy target loci, for improved detection sensitivity:^[1] The human-specific target loci are multiple-copy, and dispersed on various autosomal chromosomes The primary quantification targets have relatively short amplicons (75–80 bases), to improve the detection of degraded DNA samples
Quantifiler™ Trio DNA Quantification Kit (Cat. No. 4482910)	 Total human DNA (two targets—one small amplicon and one larger amplicon) Human male DNA Degraded DNA 	 Uses features that maximize consistency of quantification: Genomic targets have conserved primer- and probe- binding sites Minimal copy number variation between different individuals and population groups Contains a Large Autosomal target with a longer amplicon (>200 bases) to help determine if a DNA sample is degraded

^[1] The detection sensitivity of the Quantifiler[™] HP Kit and the Quantifiler[™] Trio kit is improved over the Quantifiler[™] Duo Kit.

Note: For information on the Quantifiler[™] kits, see the Quantifiler[™] HP and Quantifiler[™] Trio DNA Quantification Kits User Guide (Pub. No. 4485354).

Before you begin

(Optional) Prepare low-TE buffer

For optimal results, we recommend using low-TE buffer for sample preparation. Prepare the low-TE buffer as described in this procedure or purchase TE Buffer (Cat. No. 12090015).

- 1. Mix the buffer components together.
 - 10 mL of 1 M Tris-HCl, pH 8.0
 - 0.2 mL of 0.5 M EDTA, pH 8.0
 - 990 mL glass-distilled or deionized water

Note: Adjust the volumes proportionally for specific needs.

- 2. Aliquot, then autoclave the solutions.
- 3. Store the aliquots at room temperature.

(Before first use of the kit) Thaw reagents

Thaw the master mix and primer set.

IMPORTANT! The fluorescent dyes attached to the primers are light-sensitive. Protect the primer set and allelic ladder from light when not in use.

IMPORTANT! Thawing is required only before first use of the kit. After first use, the reagents are stored at 2–8°C and do not require subsequent thawing. Do not refreeze the reagents.

Prepare the amplification kit reactions

IMPORTANT! The fluorescent dyes attached to the primers are light-sensitive. Protect the primer set and allelic ladder from light when not in use.

- 1. Vortex the master mix and primer set for 3 seconds. Before opening the tubes or bottles, remove droplets from the caps by briefly centrifuging the tubes or tapping the bottles on the bench.
- 2. Pipet the required component volumes into an appropriately sized, clear (non-colored), polypropylene tube.

Component	Amount per reaction
Master mix	10.0 μL
Primer set	5.0 μL

Note: Include volume for extra reactions to provide excess volume for the loss that occurs during reagent transfers.

- 3. Vortex the reaction mix for 3 seconds, then briefly centrifuge.
- 4. Pipet 15 μL of the reaction mix into each well of a MicroAmp[™] Optical 96-Well Reaction Plate or each MicroAmp[™] tube.
- 5. (If needed) Adjust the sample input amount and volume.
 - If the total sample input amount is >1.0 ng, dilute with low-TE buffer to obtain a 10-µL input volume.
 - If the total sample volume is <10 μL , bring to volume with low-TE buffer to obtain a 10- μL input volume.
- 6. Prepare the samples and controls as shown in the following table, then add to the appropriate wells of a MicroAmp[™] Optical 96-Well Reaction Plate or to each MicroAmp[™] tube.

Component	Amount per reaction	
Component	30-cycle protocol	
Negative control	10 μL of low-TE buffer	
Test sample	DNA to a total amount of 1.0 ng	
Positive control	DNA Control 007 to a total amount of 1.0 ng	
	Note: DNA Control 007 contains 2 ng/ μ L of human male genomic DNA.	

The final reaction volume (sample or control plus reaction mix) is 25 µL.

7. Seal the plate with MicroAmp[™] Clear Adhesive Film or MicroAmp[™] Optical Adhesive Film, or cap the tubes.

IMPORTANT! We recommend adhesive film for plate sealing to provide a consistent seal across all wells and prevent evaporation. Do not use caps for the plate, which may not provide a consistent seal across all wells.

- 8. Vortex the plate or tubes at medium speed for 3 seconds.
- **9.** Centrifuge the tubes or plate at $3,000 \times g$ for ~20 seconds in a tabletop centrifuge (with plate holders, if using 96-well plates).

Proceed to "Extracted DNA: Perform PCR" on page 22.

Extracted DNA: Perform PCR

IMPORTANT! The kit is optimized for use with the thermal cyclers that are listed in "Instruments and software compatibility" on page 16.

- 1. Program the thermal cycler.
 - a. Set the ramping mode to 9600 Simulation.

b. Set the thermal cycling conditions as shown in the following table.

Initial incubation step	Cycle (30 cycles) ^[1]		Final extension	Final hold	
	Denature	Anneal/Extend	i indi extension	T mar noid	
HOLD	CYCLE		HOLD	HOLD	
95°C	94°C 61.5°C		60°C	4°C	
1 minute	4 seconds	1 minute	22 minutes	≤24 hours ^[2]	

^[1] See "Validated DNA amounts and PCR cycles" on page 19.

 $^{[2]}\;$ The infinity (∞) setting allows an unlimited hold time.

- 2. Load the plate or tubes into the thermal cycler, close the heated cover, then start the run.
- 3. When the run is complete, store the amplified DNA.

Storage time	Temperature
<2 weeks	2–8°C
>2 weeks	–25°C to –15°C

IMPORTANT! Protect the amplified DNA from light.

Direct amplification: Perform PCR

(Before first use of the kit) Optimize PCR cycle number	24
(Before first use of the kit) Thaw reagents	25
Direct amplification: Treated and untreated paper substrates	26
Direct amplification: Swab substrates	29
Direct amplification: Perform PCR	32

(Before first use of the kit) Optimize PCR cycle number

Before using the Yfiler[™] Plus kit for the first time, perform a single initial sensitivity experiment to determine the appropriate cycle number to use during internal validation studies and operational use of the kit. This experiment accounts for instrument-to-instrument and sample-to-sample variations. If you are processing multiple sample type and substrate combinations (for example, buccal samples on treated paper and buccal samples on swabs), perform separate sensitivity experiments for each sample type and substrate to be used for testing.

Procedural guidelines when optimizing PCR cycle number

- To minimize the impact of run-to-run variation on the results, use 26 samples so that you can complete electrophoresis with a single 96-well plate. For examples of PCR and electrophoresis plate layouts, see Appendix D, "Plate layouts".
- To minimize the effect of instrument-to-instrument variation, use the same thermal cycler to amplify all 3 plates.
- To maximize result quality, prepare and amplify Plate 1, then repeat for Plates 2 and 3. Do not prepare all 3 plates simultaneously.
- If the average peak heights fall outside the 5,000–12,000 RFU range, test more cycle numbers or fewer cycle numbers to obtain optimal peak heights. For more information about peak height range, see "Determine optimum PCR conditions" on page 25.

Select samples and prepare plates

- 1. Select 26 of each sample+substrate type. Ensure that the selected samples represent a "typical" range of samples analyzed in your laboratory.
- 2. Prepare the samples and the reactions as described in the appropriate protocols later in this chapter. Prepare sufficient PCR reagents to complete amplification of 3 replicate plates.
- **3.** Create the first of 3 identical PCR plates. For a suggested plate layout, see "Example PCR plate layout" on page 121.

4. Amplify each plate using a different cycle number to determine the optimum conditions for use in your laboratory.

Suggested cycle numbers for different sample type and substrate combinations are listed in the following table.

Sample type	Substrate
	Treated or untreated paper
Blood	27, 28, 29 cycles
Buccal	27, 28, 29 cycles

Note: Our testing has not included blood samples on swab substrates. This sample type is not often used for the collection of database or casework reference samples.

Determine optimum PCR conditions

- 1. Run the PCR products on the appropriate CE platform using the recommended protocol that is described in Chapter 4, "Perform electrophoresis".
- 2. Based on the results of the sensitivity study, select the appropriate PCR cycle number for future experiments.

The optimum PCR cycle number should generate full profiles with no instances of allelic dropout and minimal occurrences of off-scale peaks. Heterozygote peak heights should be 5,000–12,000 RFU for the following instruments:

- SeqStudio[™] Flex Series Genetic Analyzer for Human Identification
- SeqStudio[™] Genetic Analyzer for HID
- 3500 Series Genetic Analyzer for Human Identification

When amplifying single-source, unpurified samples, you may see greater sample-to-sample variation in peak height than you see with purified samples. Careful optimization of the cycle number helps to minimize this variation.

(Before first use of the kit) Thaw reagents

Thaw the master mix and primer set.

IMPORTANT! The fluorescent dyes attached to the primers are light-sensitive. Protect the primer set and allelic ladder from light when not in use.

IMPORTANT! Thawing is required only before first use of the kit. After first use, the reagents are stored at 2–8°C and do not require subsequent thawing. Do not refreeze the reagents.

Sample preparation guidelines: Treated or untreated paper substrate

- Do not add water to the wells on the reaction plate before adding the punches. If you observe static issues with the paper discs, you can prepare and dispense the 25-µL reaction mix into the wells of the reaction plate before adding the punches.
- To facilitate optimum peak intensity, make a 1.2-mm punch as close as possible to the center of the sample. Increasing the size of the punch may cause inhibition during PCR amplification.
- For manual punching: Place the tip of a 1.2-mm Harris Micro-Punch[™] on the card, hold the barrel of the Harris Micro-Punch[™] (do not touch the plunger), gently press and twist 1/4-turn, then eject the punch into the appropriate well on the reaction plate.
- For automated punching: For guidance, see the user guide for your automated or semi-automated disc punch instrument.
- For blood on untreated paper samples, add 2 µL of Prep-n-Go[™] Buffer (for use with untreated paper substrates) on top of the 1.2-mm sample punch.

3

(Optional) Prepare low-TE buffer

For optimal results, we recommend using low-TE buffer for sample preparation. Prepare the low-TE buffer as described in this procedure or purchase TE Buffer (Cat. No. 12090015).

- 1. Mix the buffer components together.
 - 10 mL of 1 M Tris-HCl, pH 8.0
 - 0.2 mL of 0.5 M EDTA, pH 8.0
 - 990 mL glass-distilled or deionized water

Note: Adjust the volumes proportionally for specific needs.

- 2. Aliquot, then autoclave the solutions.
- 3. Store the aliquots at room temperature.

Prepare the amplification kit reactions: Treated or untreated paper substrates

IMPORTANT! The fluorescent dyes attached to the primers are light-sensitive. Protect the primer set and allelic ladder from light when not in use.

1. Prepare the samples and controls as shown in the following table, then add to the appropriate wells of a MicroAmp[™] Optical 96-Well Reaction Plate.

Component	Amount per reaction			
Component	26-cycle protocol	27-cycle protocol	28- and 29-cycle protocol	
Negative control	1.2 mm blank disc	1.2 mm blank disc	1.2 mm blank disc	
Test sample	1.2 mm sample disc	1.2 mm sample disc	1.2 mm sample disc	
Positive control	3 µL of DNA Control 007	2 µL of DNA Control 007	1 µL of DNA Control 007	
IMPORTANT! Do not add a blank disc to the positive control well.				

Note: If the peak heights are too high or too low for your optimized cycle number, the suggested volumes of positive control can be adjusted.

- 2. Vortex the master mix and primer set for 3 seconds. Before opening the tubes or bottles, remove droplets from the caps by briefly centrifuging the tubes or tapping the bottles on the bench.
- 3. Pipet the required component volumes into an appropriately sized polypropylene tube.

Component	Amount per reaction
Master mix	10.0 µL
Primer set	5.0 μL
Low-TE buffer	10.0 µL

Note: Include volume for extra reactions to provide excess volume for the loss that occurs during reagent transfers.

IMPORTANT! To overcome the PCR inhibition that is expected when amplifying unpurified samples, this kit is optimized for a final PCR reaction mix volume of 25 µL. Using a lower PCR reaction mix volume may decrease the ability of the kit chemistry to generate full STR profiles.

- 4. Vortex the reaction mix for 3 seconds, then briefly centrifuge.
- 5. Pipet 25 µL of the reaction mix into each well of a MicroAmp[™] Optical 96-Well Reaction Plate.
- 6. Seal the plate with MicroAmp[™] Clear Adhesive Film or MicroAmp[™] Optical Adhesive Film.

IMPORTANT! We recommend adhesive film for plate sealing to provide a consistent seal across all wells and prevent evaporation. Do not use caps, which may not provide a consistent seal across all wells.

3

- 7. Vortex the plate at medium speed for 3 seconds.
- 8. Centrifuge the plate at $3,000 \times g$ for ~20 seconds in a tabletop centrifuge with plate holders.

Proceed to "Direct amplification: Perform PCR" on page 32.

Direct amplification: Swab substrates

Sample preparation guidelines: Swab substrate

- Detach each buccal swab head from the swab shaft before lysis.
- If you are using the heated lysis protocol, perform lysis in any of the following formats:
 - 1.5-mL tubes with a heat block (VWR™ Scientific Select dry heat block or similar)
 - PrepFiler™ 96-Well Processing Plates (Cat. No. 4392904)
 - Robbins Scientific™ Model 400 Hybridization Incubator or similar
 - Agilent[™] Benchtop Rack for 200 µL Tubes/V Bottom Plates (metal) or similar (Cat. No. 410094)

IMPORTANT! Do not use a plastic plate adaptor.

• For optimum performance, lyse the entire swab. If you need to preserve the sample, use half of the lysate prepared from the entire swab.

Prepare the sample lysate: Room temperature

This protocol may improve the performance of challenging or aged samples.

- 1. Add 400 μL of Prep-n-Go[™] Buffer (Cat. No. 4471406) to 1.5-mL tubes or the appropriate wells of a PrepFiler[™] 96-Well Processing Plate (Cat. No. 4392904).
- 2. Place the entire head of each swab into a tube or well, then let stand for 20 minutes at room temperature (20–25°C) to lyse the sample.
- **3.** After 20 minutes, transfer the sample lysate into tubes or plates for storage, then discard the tubes or plate that contain the swab heads.

Note: To minimize the risk of contamination, do not remove the swab heads from the sample lysate before transferring the lysate.

Proceed to "Prepare the amplification kit reactions: Swab substrate" on page 30 or "Store the sample lysate" on page 32.

Prepare the sample lysate: Heat protocol

This protocol may improve the performance of challenging or aged samples.

- 1. Preheat the heat block to 90°C, or preheat the oven with a metal plate adaptor to 99°C.
- 2. Add 400 µL of Prep-n-Go[™] Buffer (for buccal swabs, Cat. No. 4471406) to 1.5-mL tubes or to the appropriate wells of a PrepFiler[™] 96-Well Processing Plate (Cat. No. 4392904).
- 3. Into each tube or well, put the entire head of each swab. If you are using tubes, cap the tubes.
- 4. Let the tubes or plate stand for 20 minutes in the preheated heat block or oven to lyse the sample.
- 5. After 20 minutes, remove the tubes or plate from the heat block or oven, then let the lysate stand at room temperature for ≥15 minutes to cool the lysate (for accurate pipetting).
- 6. Transfer the sample lysate to tubes or plates for storage. Discard the tubes or plate that contain the swab heads.

Note: To minimize the risk of contamination, do not remove the swab heads from the sample lysate plate before transferring the lysate.

Proceed to "Prepare the amplification kit reactions: Swab substrate" on page 30 or "Store the sample lysate" on page 32.

Prepare the amplification kit reactions: Swab substrate

IMPORTANT! The fluorescent dyes attached to the primers are light-sensitive. Protect the primer set and allelic ladder from light when not in use.

1. Add Prep-n-Go[™] Buffer (Cat. No. 4471406) to the appropriate wells of a MicroAmp[™] Optical 96-Well Reaction Plate.

Control well	Prep-n-Go™ Buffer			
Control weil	26-cycle protocol	27-cycle protocol	28- and 29-cycle protocols	
Negative control	3 µL	3 µL	3 µL	
Positive control	– (Do not add buffer)	1 µL	2 µL	

2. Prepare the samples and controls as shown in the following table, then add to the appropriate wells of a MicroAmp[™] Optical 96-Well Reaction Plate.

Component	Amount per reaction			
	26-cycle protocol	27-cycle protocol	28- and 29-cycle protocols	
Test sample	3 μL of sample lysate	3 μL of sample lysate	3 μL of sample lysate	
Positive control	3 µL of DNA Control 007	2 µL of DNA Control 007	1 µL of DNA Control 007	

Note: If the peak heights are too high or too low for your optimized cycle number, the suggested volumes of positive control can be adjusted.

- **3.** Vortex the master mix and primer set for 3 seconds. Before opening the tubes or bottles, remove droplets from the caps by briefly centrifuging the tubes or tapping the bottles on the bench.
- 4. Pipet the required component volumes into an appropriately sized polypropylene tube.

Component	Amount per reaction
Master mix	10.0 μL
Primer set	5.0 μL
Low-TE buffer	10.0 µL

Note: Include volume for extra reactions to provide excess volume for the loss that occurs during reagent transfers.

IMPORTANT! To overcome the PCR inhibition that is expected when amplifying unpurified samples, this kit is optimized for a final PCR reaction mix volume of 25 µL. Using a lower PCR reaction mix volume may decrease the ability of the kit chemistry to generate full STR profiles.

- 5. Vortex the reaction mix for 3 seconds, then briefly centrifuge.
- 6. Pipet 25 µL of the reaction mix into each well of a MicroAmp[™] Optical 96-Well Reaction Plate. The final volume in each well is 28 µL (reaction mix plus Prep-n-Go[™] Buffer or sample lysate or positive control).
- 7. Seal the plate with MicroAmp[™] Clear Adhesive Film or MicroAmp[™] Optical Adhesive Film.

IMPORTANT! We recommend adhesive film for plate sealing to provide a consistent seal across all wells and prevent evaporation. Do not use caps, which may not provide a consistent seal across all wells.

- 8. Vortex the plate at medium speed for 3 seconds.
- 9. Centrifuge the plate at $3,000 \times g$ for ~20 seconds in a tabletop centrifuge with plate holders.

Proceed to "Direct amplification: Perform PCR" on page 32.

Store the sample lysate

- 1. Cap the sample lysate storage tubes or seal the sample lysate storage plate with MicroAmp[™] Clear Adhesive Film (Cat. No. 4306311).
- 2. Store the sample lysate as needed.

Storage time	Temperature
<2 weeks	2–8°C
>2 weeks	–25°C to −15°C

Note: The effects of multiple freeze/thaw cycles on the lysate have not been fully evaluated. Therefore, multiple freeze/thaw cycles are not recommended.

Direct amplification: Perform PCR

IMPORTANT! The kit is optimized for use with the thermal cyclers that are listed in "Instruments and software compatibility" on page 16.

- **1.** Program the thermal cycler.
 - a. Set the ramping mode to 9600 Simulation.
 - b. Set the thermal cycling conditions as shown in the following table.

Initial incubation stop	Optimum cycle number (26–29) ^[1]		Final oxtonsion	Final hold
initial incubation step	Denature	Anneal/Extend		Tina nou
HOLD	CYCLE		HOLD	HOLD
95°C	94°C	61.5°C	60°C	4°C
1 minute	4 seconds	1 minute	22 minutes	≤24 hours ^[2]

^[1] Determine the optimum cycle number for your laboratory according to the instructions in "(Before first use of the kit) Optimize PCR cycle number" on page 24.

 $^{[2]}\;$ The infinity (∞) setting allows an unlimited hold time.

- 2. Load the plate into the thermal cycler, close the heated cover, then start the run.
- 3. When the run is complete, store the amplified DNA.

Storage time	Temperature
<2 weeks	2–8°C
>2 weeks	–25°C to –15°C

IMPORTANT! Protect the amplified DNA from light.

Perform electrophoresis

Allelic ladder requirements for electrophoresis	33
(Before first use of the kit) Set up the capillary electrophoresis instrument	34
Prepare samples for electrophoresis and start the run	37

Allelic ladder requirements for electrophoresis

Instrument	Number of allelic ladders to run	One injection equals	Number of samples per allelic ladder
SeqStudio™ 24 Flex Genetic Analyzer	1 per injection	24 samples	23 samples + 1 allelic ladder
SeqStudio™ 8 Flex Genetic Analyzer	1 per 3 injections	8 samples	23 samples + 1 allelic ladder
SeqStudio™ Genetic Analyzer	1 per 6 injections	4 samples	23 samples + 1 allelic ladder
3500xL Genetic Analyzer	1 per injection	24 samples	23 samples + 1 allelic ladder
3500 Genetic Analyzer	1 per 3 injections	8 samples	23 samples + 1 allelic ladder

To accurately genotype samples, you must run an allelic ladder with the samples.

IMPORTANT! Variation in laboratory temperature can cause changes in fragment migration speed and sizing variation between runs. Follow the guidelines in the preceding table, which should account for normal variation in run speed. To facilitate accurate genotyping of all samples in your laboratory environment, perform internal validation studies to verify the required allelic ladder injection frequency.

It is critical to genotype using an allelic ladder that is run under the same conditions as the samples. Size values obtained for the same sample can differ between instrument platforms because of different polymer matrices and electrophoretic conditions.

(Before first use of the kit) Set up the capillary electrophoresis instrument

Data collection software setup

To analyze PCR products generated by the kit, you can use the data collection software and run parameters provided in this section. See the appropriate table for your instrument.

Note: Individual CE instrument signal intensities can vary; therefore, changes to injection parameters may need to be explored and validated to deliver the best results on your system. Large deviations from the recommended injection parameters can affect the performance of the size standard and allelic ladder, therefore validation is recommended.

Note: For detailed procedures, see the appropriate user documentation for your instrument.

Table 1 Software setup: SeqStudio[™] Flex Series Genetic Analyzer for Human Identification

SeqStudio [™] Flex Data Collection Software	(Optional) Additional software	Run parameters
v1.1.1	SAE Administrator Console v2.1	Injection protocol: HID_Protocol_J6_36_POP4(xl)
	 SeqStudio[™] Plate Manager Software v2.1, v2.1.1 SeqStudio[™] Flex Remote Monitoring Software 	Size standard: GS600 LIZ (60-460)
		Dye set: J6 (DS-36)
		Run module: HID_J6_36_POP4 (xl)
	Injection conditions: 1.2 kV/15 seconds (xl: 24 seconds)	
	Run conditions: 13 kV/1,550 seconds	

Table 2 Software setup: SeqStudio[™] Genetic Analyzer for HID

SeqStudio™ Data Collection Software	(Optional) Additional software	Run parameters	Plate setup
v1.2.1, v1.2.4, v1.2.5	 SAE Administrator Console v2.0, v2.1 SeqStudio[™] Plate Manager Software v1.2, v1.3 	Run Module: HID Analysis Injection conditions: 1.2 kV/10 seconds	Kit: Yfiler™ Plus kit Dye set: J6 (DS-36)
		Run conditions: 11 kV/1,120 seconds	Size standard: GS600 LIZ (60–460)

Operating system	3500 Data Collection Software	Run parameters
Windows™ 10	v4, v4.0.1	Assay: AB_J6_LS_POP4(xl)
		Instrument protocol: AB_HID36_POP4(xI)_J6_NT3200
		Run module: HID36_POP4(xl)
		Injection conditions: 1.2 kV/16 seconds (xI: 24 seconds) ^[1]
		Alternate injection conditions: 1.5 kV/16 seconds (xl: 24 seconds) ^[2]
		Run conditions: 13 kV/1,550 seconds
		Dye set: J6

Table 3 Software setup: 3500 Series Genetic Analyzer for Human Identification

^[1] This kit was developed using an injection time of 16 seconds on the 3500 instrument. This is different from the default injection time of 15 seconds. You will need to change the instrument protocol accordingly.

[2] This kit was developed using two injection voltage conditions for the 3500 instrument: 1.2 kV/16 seconds and 1.5 kV/16 seconds. You are encouraged to explore both options during validation to determine which protocol provides the best results on your instrument.

Perform spectral calibration

Perform a spectral calibration using the DS-36 Matrix Standard Kit (Dye Set J6, 6-dye) (Cat. No. 4425042).

Examples of spectral calibrations are shown in this section. See the appropriate figure for your instrument.

Figure 3 Example spectral calibration: SeqStudio™ Flex Series Genetic Analyzer for Human Identification

Figure 4 Factory-provided spectral calibration: SeqStudio[™] Genetic Analyzer for HID

Figure 5 Example spectral calibration: 3500 Series Genetic Analyzer for Human Identification

Prepare samples for electrophoresis and start the run

Prepare the samples for electrophoresis immediately before loading.

IMPORTANT! The fluorescent dyes attached to the primers are light-sensitive. Protect the primer set, amplified DNA, allelic ladder, and size standard from light when not in use.

1. Pipet the required component amounts into an appropriately sized polypropylene tube.

Component	Amount per reaction
GeneScan™ 600 LIZ™ Size Standard v2.0	0.4 µL
Hi-Di™ Formamide	9.6 µL

Note: Include additional samples in your calculations to account for the loss that occurs during reagent transfers.

IMPORTANT! The amount of size standard indicated in the table is a suggested amount. Determine the appropriate amount of size standard based on your experiments and results.

2. Vortex the tube, then briefly centrifuge.

3. Pipet the required component amounts into each well of a MicroAmp™ Optical 96-Well Reaction Plate.

Component	Amount per reaction
Formamide/size standard mixture	10 µL
PCR product or allelic ladder	1 µL

Note: For blank wells, add 10 µL of Hi-Di[™] Formamide.

- 4. Seal the reaction plate with appropriate septa, then briefly vortex and centrifuge the plate to ensure that the contents of each well are mixed and collected at the bottom.
- 5. Heat the reaction plate in a thermal cycler for 3 minutes at 95°C.
- 6. Immediately place the plate on ice for 3 minutes.
- 7. Place the sample tray on the autosampler, then start the electrophoresis run.

Analyze data with GeneMapper[™] *ID-X* Software

Overview of GeneMapper [™] ID-X Software	39
Allelic ladder requirements for data analysis	40
File names and versions used in this section	40
Set up the GeneMapper [™] ID-X Software for analysis (before first use of the kit)	41
Create an analysis method	47
(If needed) Create a size standard definition file	55
Analyze and edit sample files with GeneMapper [™] ID-X Software	58
Examine or edit a project	58
For more information on using the GeneMapper [™] ID-X Software	58

Overview of GeneMapper[™] *ID-X* Software

GeneMapper[™] *ID-X* Software is an automated genotyping software application for forensic casework, databasing, and paternity data analysis.

After capillary electrophoresis, the data collection software stores information for each sample in a FSA or HID file. The GeneMapper^M *ID-X* Software allows you to analyze and interpret the data from the FSA or HID files.

Note: For a list of GeneMapper[™] *ID-X* Software versions that are compatible with your kit and capillary electrophoresis instrument, see "Instruments and software compatibility" on page 16.

Allelic ladder requirements for data analysis

- HID analysis requires at least one allelic ladder sample per run folder. Perform the appropriate internal validation studies before you use multiple allelic ladder samples in an analysis.
 For multiple allelic ladder samples, the GeneMapper™ *ID-X* Software calculates allelic bin offsets by using an average of all allelic ladders that use the same panel in a run folder.
- Allelic ladder samples in an individual run folder are considered to be from a single run. When the software imports multiple run folders into a project, only the ladders in their respective run folders are used for calculating allelic bin offsets and subsequent genotyping.
- Allelic ladder samples must be labeled as "Allelic Ladder" in the Sample Type column in a project. Analysis will fail if the Allelic Ladder Sample Type is not specified.
- Injections containing the allelic ladder must be analyzed with the same analysis method and parameter values that are used for samples, to help ensure proper allele calling.
- Alleles that are not in the allelic ladders do exist. Off-ladder (OL) alleles can contain full and/or partial repeat units. An off-ladder allele is an allele that occurs outside the bin window of any known allelic ladder allele or virtual bin.

Note: If a sample allele peak is called as an off-ladder allele, verify the sample result according to your laboratory protocol.

File names and versions used in this section

The file names and version numbers of panel, bin, and stutter files that are shown in this section may differ from the file names that you see when you download or import files.

If you need help to determine the correct files to use, contact your local Human Identification representative, or go to **thermofisher.com/support**.

Set up the GeneMapper[™] *ID-X* Software for analysis (before first use of the kit)

Workflow

Before you use GeneMapper[™] *ID-X* Software to analyze data for the first time, you must do the following:

Set up GeneMapper™ <i>ID-X</i> Software
Check panel, bin, and stutter file versions on your computer
(If needed) Download newer versions of panel, bin, and stutter files
(If needed) Import panels, bins, and marker stutter
(Optional) Define custom table or plot settings

Check panel, bin, and stutter file versions on your computer

- 1. Start the GeneMapper[™] *ID-X* Software, then sign in with the appropriate user name and password.
- 2. Select Tools > Panel Manager.
- 3. Check the version of files that are currently available in the Panel Manager.
 - a. Select Panel Manager in the navigation pane.
 - b. Expand the **Panel Manager folder** and any subfolders to identify the analysis file version that is already installed for your kit choice.
- Panel Manager File Edit Bins View Help Panel Manager
- 4. Check the version of files available for import into the Panel Manager.
 - a. Select **Panel Manager**, then select **File > Import Panels** to open the **Import Panels** dialog box.
 - b. Navigate to the Panels folder, then check the version of panel, bin, and stutter files installed.

GeneMapper[™] ID-X Software v1.7.x contains the latest panel, bin, and stutter files for the STR kits.

- If the latest files are not installed on your copy of the GeneMapper[™] *ID-X* Software, proceed to "(If needed) Download newer versions of panel, bin, and stutter files" on page 42.
- If the latest files are already installed on your copy of the GeneMapper[™] *ID-X* Software, skip to "Create an analysis method" on page 47.

(If needed) Download newer versions of panel, bin, and stutter files

1. Go to www.thermofisher.com/GMIDXsoftware.

The page provides a list of kit-specific analysis files. The analysis files for each kit can be downloaded in a single ZIP file.

2. If the analysis file versions listed for your kit are newer than the versions on your computer, download the ZIP file.

Note: When downloading new versions of analysis files, see the associated **Read Me** file for details of changes between software file versions. Perform the appropriate internal validation studies before using new file versions for analysis.

3. Unzip the file.

(If needed) Import panels, bins, and marker stutter

Import the latest panel, bin set, and marker stutter from the website into the GeneMapper[™] *ID-X* Software database.

Note: The file names specified in this procedure are examples only. The files that you import may have different file names.

- 1. Start the GeneMapper[™] *ID-X* Software, then sign in with the appropriate user name and password.
- 2. Select Tools > Panel Manager.
- 3. Open the folder that contains the panels, bins, and marker stutter.
 - a. Select Panel Manager, then select File ▶ Import Panels to open the Import Panels dialog box.
 - **b.** Navigate to the analysis files folder that you unzipped in "(If needed) Download newer versions of panel, bin, and stutter files" on page 42.

4. Select the panels TXT file for your kit, then click Import.

🧬 Import Pane	ls		×
Look <u>I</u> n:	Danels	•	a 🔒 🗅 🙁 🗄
AmpFLSTF	R_Bins_v7X.txt R_Panels_v7X.txt R_Stutter_v7X.txt		
File <u>N</u> ame:	AmpFLSTR_Panels_v7X.txt		
Files of <u>T</u> ype:	All Files		-
			Import Cancel

Importing the panels TXT file creates a new folder in the navigation pane of the **Panel Manager**. This folder contains the panels and associated markers.

- 5. Import the bins file.
 - a. In the navigation pane, select the panel folder created in step 4.

- b. Select File > Import Bin Set to open the Import Bin Set dialog box.
- c. Navigate to the analysis files folder for your kit (from step 3).

d. Select the bins TXT file for your kit, then click Import.

🧬 Import Bin S	et	×
Look <u>I</u> n:	Panels	▼ a a c 88=
	R_Bins_v7X.txt R Panels v7X.txt	
	Stutter_v7X.txt	
File <u>N</u> ame:	AmpFLSTR_Bins_v7X.txt	
Files of <u>T</u> ype:	All Files	▼
		Import Cancel

Importing the bins TXT file associates the bin set with the panels imported in step 4.

6. *(Optional)* View marker and panel information: In the navigation pane, select the panel folder for your kit.

The panel information is displayed in the right pane and the markers are displayed below it.

Panel Manager X														
File Edit Bins View Help														
🚔 🗙 📑 🖬 📰 🗮 Bin S	Set:	AmpFLSTR_Bin	s_v7X			-					0			
- 🖨 GlobalFiler_Panel_v1.2X		Marker Name	Dye Color	Min Size	Max Size	Control Alleles	Marker	Comments	Y Marker	Internal QC	PAT	Homozygo	Heterozygo	Min PHR
← Carter Plus_Panel_v4.2X	1	DYS576	Blue	68.0	138.0	19	4	none			0.0	0.0	0.0	0.0
← 🚞 NGM_Detect_Panel_v3.1X	2	DYS389I	Blue	142.0	184.0	13	4	none			0.0	0.0	0.0	0.0
VeriFiler_Express_Panels_v4	3	DYS635	Blue	187.0	257.0	24	4	none			0.0	0.0	0.0	0.0
← 🗀 Identifiler_Plus_v1.6X	4	DYS389II	Blue	260.2	314.2	29	4	none			0.0	0.0	0.0	0.0
 Identifiler_Direct_v1.6X 	5	DYS627	Blue	319.5	393.5	21	4	none			0.0	0.0	0.0	0.0
MiniFiler_V1.6X	6	DYS460	Green	75.1	113.1	11	4	none			0.0	0.0	0.0	0.0
NGM_SElect_Express_V1.5X	7	DYS458	Green	115.0	177.0	17	4	none			0.0	0.0	0.0	0.0
← → Vfiler v1 6X	8	DYS19	Green	179.5	229.5	15	4	none			0.0	0.0	0.0	0.0
• • NGM v3.6X	9	YGATAH4	Green	231.4	269.4	13	4	none			0.0	0.0	0.0	0.0
► □ Identifiler_v1.6X	1	0 DYS448	Green	271.2	345.2	19	6	none			0.0	0.0	0.0	0.0
► ☐ Identifiler_CODIS_v1.6X	1	1 DYS391	Green	348.5	402.5	11	4	none			0.0	0.0	0.0	0.0
► È Profiler_Plus_v1.6X	1	2 DYS456	Yellow	71.0	135.0	15	4	none			0.0	0.0	0.0	0.0
► Description Profiler_Plus_CODIS_v1.6X	1	3 DYS390	Yellow	139.2	197.2	24	4	none			0.0	0.0	0.0	0.0
COfiler v1.6V	1	4 DYS438	Yellow	201.5	263.5	12	5	none			0.0	0.0	0.0	0.0
	1	5 DYS392	Yellow	270.0	326.8	13	3	none			0.0	0.0	0.0	0.0
— 攝 Reference Samples	1	6 DYS518	Yellow	327.8	406.0	37	4	none			0.0	0.0	0.0	0.0
	1	7 DYS570	Red	93.5	167.5	17	4	none			0.0	0.0	0.0	0.0
	1	8 DYS437	Red	173.3	215.3	15	4	none			0.0	0.0	0.0	0.0
	1	9 DYS385	Red	220.4	318.4	11,14	4	none			0.0	0.0	0.0	0.0
	2	0 DYS449	Red	320.8	403.0	30	4	none			0.0	0.0	0.0	0.0
	2	1 DYS393	Purple	85.36	139.36	13	4	none			0.0	0.0	0.0	0.0
	2	2 DYS439	Purple	145.6	199.6	12	4	none			0.0	0.0	0.0	0.0
	2	3 DYS481	Purple	203.0	256.0	22	3	none			0.0	0.0	0.0	0.0
	2	4 DYF387S1	Purple	259.4	325.0	35,37	4	none			0.0	0.0	0.0	0.0
	2	5 DY8533	Purple	333.9	383.9	13	4	none			0.0	0.0	0.0	0.0
		4												

- 7. Import the stutter file.
 - a. In the navigation pane, select the panel folder for your kit.
 - b. Select File > Import Marker Stutter to open the Import Marker Stutter dialog box.
 - c. Navigate to the analysis files folder for your kit (from step 3).
 - d. Select the stutter TXT file for your kit, then click Import.

🧬 Import Mark	er Stutter	×
Look <u>I</u> n: 📑 P	anels	• A A C B B
AmpFLSTR	_Bins_v7X.txt	
AmpFLSTR	_Panels_v7X.txt	
AmpFLSTR	_Stutter_v7X.txt	
File <u>N</u> ame:	AmpFLSTR_Stutter_v7X.txt	
Files of <u>T</u> ype:	All Files	•
		Import Cancel

Importing the stutter TXT file associates the marker stutter ratio with the bin set in the panel folder for your kit (step 4) and overwrites any existing stutter ratios associated with the panels and bins in that folder.

- 8. (Optional) View the imported marker stutters.
 - a. In the navigation pane, click the panel folder for your kit to expand it.
 The markers are displayed in the navigation pane.

Yfiler™ Plus PCR Amplification Kit User Guide

b. Double-click a marker, then select the **Stutter Ratio & Distance** view for the marker in the right pane.

🧬 Panel Manager								×
File Edit Bins View Help								
	AmpEL STD. Dine. v7V	_ n# 1						
	Amprestr_bills_v/A					U		
Priler_Plus_Panel_v4.2X P DYS576 DYS577 DYS577 DYS577 DYS577 DYS577 DYS577 DYS57	Please ente	er the stutter filter(s) for I	DYS576 marker her	e.lf left bla	ank, the gl	obal stutter filt	er will be appl	ied.
Stutter Ratio & Distance Marker thresholds	Marker Leve	el Minus Stutter			Marker	Level Plus S	Stutter	
• DYS389I	Ratio From D	Distance To Distance]	[Ratio	From Distance	To Distance	
- DYS635	1 0.1515 3.25	4.75	1	1	0.0338	3.25	4.75	
► DYS627	2			2				
► DYS460	3			3				
- DYS458	4]	4				
► DYS19			New Edit	Delete				
 YGATAH4 			<u>n</u> en <u>r</u> un	Delete	·			
 DYS448 								
► DYS391								
DYS456								
UTS390	Allele-Specific Min	us Stutter		Allele	 Specific 	Plus Stutte	r	
	Ratio From D	Distance To Distance	Allele	[Ratio	From Distance	To Distance	Allele
- 🚠 Reference Samples	1			1				
	2			2				
	3			3				
	4			4				
		I				1	1	
			<u>N</u> ew <u>E</u> dit	Delete	•			

Note: The allele-specific stutter fields shown in the image are not implemented in GeneMapper^M *ID-X* Software v1.6 and earlier.

9. Click **Apply**, then click **OK** to add the panel, bin set, and marker stutter to the GeneMapper[™] *ID-X* Software database.

IMPORTANT! If you close the **Panel Manager** without clicking **Apply**, the panels, bin sets, and marker stutter are not imported into the GeneMapper[™] *ID-X* Software database.

(Optional) Define custom table or plot settings

Default views for table and plot settings are provided with the software.

For information on defining custom views, see GeneMapper[™] ID-X Software v1.5 Getting Started Guide — Basic Features.

Create an analysis method

Create an analysis method

IMPORTANT! Because analysis methods are version-specific, you need to create an analysis method for each version of the software. For example, an analysis method that is created in GeneMapper^M *ID-X* Software v1.6 is not compatible with analysis methods that are created in v1.5 or v1.7.x.

1. Select Tools > GeneMapper ID-X Manager to open the GeneMapper ID-X Manager.

J GeneMa	pper ID-X Manager Find	Name Containing:								~
Projects	Analysis Methods	Table Settings	Plot Settings	Ма	trices	Size Sta	ndards	Report	Settings	
Proje	ect		Last Saved		Owner		# of Sarr	ples	Description	
Test	1		2023-12-191	2:15	gmidx		14			
Test	2		2023-11-021	0:51	gmidx		4			
Rename Save As Import Export Dejete										

- 2. Click the Analysis Methods tab, then click New to open the Analysis Method Editor with the General tab selected.
- 3. Enter the settings as described in the following pages.

Note: The **Analysis Method Editor** closes when you save the settings. To complete this step quickly, do not save the analysis method until you finish entering the settings in all tabs.

4. After you enter the settings on all tabs, click Save.

Enter Analysis Method settings

Enter General tab settings

- **1.** Enter an analysis method name.
- 2. Select the security group appropriate for your software configuration.
- 3. (Optional) Enter a description and an instrument.

🧬 Analysis Metho	d Editor	×
General Allele	Peak Detector Peak Quality SQ & GQ Settings	
Analysis Method	Description]
Name:	My_Analysis_Method	
Security Group:	GeneMapper ID-X Security Group	
Description:		
Instrument:		
Analysis Type:	HID	
	Save <u>C</u> ancel Help	

Figure 6 General tab settings

Enter Allele tab settings

IMPORTANT! Perform internal validation studies to determine the appropriate settings for your laboratory.

- 1. Select the appropriate bin set.
- 2. (Optional) Select stutter options.

Option	Action	Additional information
Use marker-specific stutter ratio and distance if available	Select or deselect the checkbox, as needed.	To apply the stutter ratios that are contained in the Panel Manager, select the checkbox.
Use allele-specific stutter ratios and distances if available The checkbox is available only for GeneMapper [™] <i>ID-X</i> Software v1.7 or later.	Select or deselect the checkbox, as needed.	To use allele-specific stutter filtering, select the checkbox.
Consider additive stutters (forward and back) The checkbox is available only for GeneMapper [™] <i>ID-X</i> Software v1.7 or later.	Select or deselect the checkbox, as needed.	To take additive stutter into consideration, select the checkbox.

Note: For more information on the GeneMapper[™] *ID-X* Software v1.7 options, see the *GeneMapper*[™] *ID-X* Software v1.7 New Features and Software Verification and Validation User Bulletin (Pub. No. MAN0029209).

3. In the Marker Repeat Type pane, enter values for the Tri, Tetra, Penta, and Hexa loci.

Note: For paternity and database applications: In the **Global Cut-off Value** field, we recommended using a cut-off value of 20% for the Tri, Tetra, and Penta loci.

4. Enter the appropriate filter settings.

P Analysis Method Editor									
General Allele Pe	eak Detector	Peak Qua	lity SQ 8	GQ Setting	js				
Bin Set: AmpFLSTR_Bins_v7X									
Use marker-specific stu	itter ratio and dista	nce if availa	able						
Use allele-specific stutt	er ratios and distan	ces if avail	able.						
Consider additive stutte	rs (forward and ba	ack).							
Marker Repeat Type:		Tri	Tetra	Penta	Hexa				
Global Cut-off Value		0.0	0.0	0.0	0.0				
MinusA Ratio		0.0	0.0	0.0	0.0				
MinusA Distance	From	0.0	0.0	0.0	0.0				
	То	0.0	0.0	0.0	0.0				
Global Minus Stutter Ra	tio	0.0	0.0	0.0	0.0				
Global Minus Stutter Dis	stance From	0.0	3.25	0.0	0.0				
	То	0.0	4.75	0.0	0.0				
Global Plus Stutter Rati	0	0.0	0.0	0.0	0.0				
Global Plus Stutter Dist	ance From	0.0	0.0	0.0	0.0				
	То	0.0	0.0	0.0	0.0				
Amelogenin Cutoff 0.0									
Range Filter <u>F</u> actory Defaul									
Save <u>C</u> ancel Help									

Figure 7 Allele tab settings

Enter Peak Detector tab settings

Enter or select the appropriate values.

Option	Action	Additional information			
Use marker-specific thresholds (if available) The checkbox is available only for GeneMapper [™] <i>ID-X</i> Software v1.7 or later.	Select or deselect the checkbox, as needed.	To use the marker-specific thresholds defined in the Panel Manager, select the checkbox.			
Ranges	Analysis – Select Full Range from the dropdown list.	<i>(if needed)</i> The analysis range can be narrowed.			
	Sizing—Select All Sizes from the dropdown list.	_			
Smoothing and Baselining	Smoothing—Select Light.	The Yfiler [™] Plus kit was validated with the values listed. If your laboratory uses an unvalidated polymer, you may			
	Baseline Window— Enter 33 pts.	need to adjust these values.			
Size Calling Method	Select 3rd Order Least Squares or Local Southern Method.	The Yfiler [™] Plus kit was validated using the 3rd Order Least Squares and Local Southern Method. Do not select another method unless you perform internal validation studies to determine the appropriate method for your laboratory.			
Peak Detection	Peak Amplitude Thresholds —User-defined.	The default value is 50 RFU for all dyes. Perform internal validation studies to determine the appropriate peak amplitude thresholds for your laboratory.			
	Min. Peak Half Width— Enter 2 pts.	The Yfiler™ Plus kit was validated with the values listed. Do not enter other values unless you perform internal			
	Polynomial Degree – Enter 3.	validation studies to determine the appropriate values for your laboratory.			
	Peak Window Size— Enter 13 pts.				
Slope Threshold	Peak Start-Enter 0.0.				
	Peak End-Enter 0.0.				

(continued)

Option	Action	Additional information
Use Normalization, if applicable	Select or deselect the checkbox, as needed.	To apply size standard normalization data to the analysis, select the checkbox.
for use with data run on the following instruments:		capillary electrophoresis instrument. To see if normalization data have been collected for a specific data file, see SS
 SeqStudio[™] Flex Series Genetic Analyzer for Human Identification 		Normalization Factor in the GeneMapper [™] <i>ID-X</i> Software.
 3500 Series Genetic Analyzer for Human Identification 		

Peak Detection Algorithm: Advanced Use marker-specific thresholds (if available). Ranges Analysis Sizing All Sizes Start Pt 0 Start Size 0 Stop Size 1000 Stop Size 1000 Smoothing and Baselining Smoothing Mana Baselining Smoothing None © Light Heavy Baseline Window: 33 pts Size Calling Method 2nd Order Least Squares 3rd Order Least Squares Cubic Spline Interpolation © Local Southern Method Global Southern Method Min. Peak Half Width: 2 pts Polynomial Degree: 3 Peak Window Size: 13 pts Siope Threshold Peak Start: 0.0 Normalization Use Normalization, if applicable Eactory Defaults	General Allele	Peak Detector	Peak Quality	SQ & GQ Settings	
Full Range All Sizes Start Pt: Start Size: Stop Pt: 10000 Stop Size: 1000 Smoothing and Baselining Smoothing None Light Heavy Baseline Window: 33 Size Calling Method 2nd Order Least Squares 3rd Order Least Squares Cubic Spline Interpolation Local Southern Method Global Southern Method Stop Size: Min. Peak Half Width: 2 Peak Start: 0.0 Peak Start: 0.0 Normalization Use Normalization, if applicable	Peak Detection Algo Use marker-specific Ranges Analysis	rithm: Advanced thresholds (if availat Sizing	ole). Peak D Peak A	etection mplitude Thresholds:	
Smoothing None Light Heavy Baseline Window: 33 pts Size Calling Method 2nd Order Least Squares 3rd Order Least Squares 3rd Order Least Squares Cubic Spline Interpolation Local Southern Method Global Southern Method Use Normalization, if applicable Eactory Defaults	Full Range Start Pt: 0 Stop Pt: 10000 Smoothing and Base	All Sizes Start Size: 0 Stop Size: 1000	▼ B: G: Y:	R: P: O:	
Size Calling Method Output Calling Method Output Calling Method Peak Start: Output Calling Method 0.0 Peak Start: 0.0 Peak End: 0.0 Normalization Use Normalization, if applicable	Smoothing ON Li H Baseline Window:	one ght eavy 33 pts	Min. P Polyno Peak V	eak Half Width: 2 F mial Degree: 3 Vindow Size: 13 F	ots ots
Global Southern Method Use Normalization, if applicable <u>Factory Defaults</u>	Size Calling Method 2nd Order Leas 3rd Order Leas Cubic Spline In Local Southern	st Squares t Squares terpolation	Peak Peak Peak Peak	Start: 0.0 End: 0.0 lization 0.0	
<u>Factory Defaults</u>	Global Southern	n Method	Use	Normalization, if applicable	
				<u>Factory Defaults</u>	

Figure 8 Peak Detector tab settings

Enter Peak Quality tab settings

- 1. Perform internal validation studies to determine the heterozygous and homozygous minimum peak height thresholds, maximum peak height threshold, and the minimum peak height ratio threshold for interpretation of data.
- 2. For the remaining fields, enter the values shown in Figure 9.

Note: The Pull-Up Ratio (PU) settings shown in the figure are implemented only in GeneMapper [™]
<i>ID-X</i> Software v1.7 or later. For more information on these settings, see the <i>GeneMapper</i> [™]
ID-X Software v1.7 New Features and Software Verification and Validation User Bulletin
(Pub. No. MAN0029209).

📌 Analysis Method Editor	×
General Allele Peak Detector Peak Quality SQ & GQ Settings	
Min/Max Peak Height (LPH/MPH) Homozygous min peak height Heterozygous min peak height Max Peak Height (MPH)	
Peak Height Ratio (PHR) Min peak height ratio	
Broad Peak (BD)Max peak width (basepairs)1.5	
Allele Number (AN) Max expected alleles: For autosomal markers & AMEL 2 For Y markers 1	
Allelic Ladder Spike Spike Detection Cut-off value	
Sample Spike Detection Spike Detection Enable	
Pull-Up Ratio (PU) Enable pull-up detection. Image: Label pull-up Remove pull-up peaks Max pull-up ratio 0.05 Pull-up offset (data points)	
Save As Save Cancel Help	

Figure 9 Peak Quality tab settings

Enter SQ & GQ tab settings

Enter the appropriate values.

IMPORTANT! The software default values are shown in Figure 10. We used the software default values during developmental validation. We recommend that you perform internal validation studies to determine the appropriate values for your laboratory.

Analysis N	Aethod Ed	litor		
General	Allele	Peak Detector	Peak Quality	SQ & GQ Settings
Quality we	ights are l	between 0 and 1.		
Sample a	nd Contro	I GQ Weighting –		
Broad Pe	ak (BD)	0.8	Allele Num	iber (AN) 1.0
Out of Bin	n Allele (Bl	IN) 0.8	Low Peak	Height (LPH) 0.3
Overlap (OVL)	0.8	Max Peak I	Height (MPH) 0.3
Marker Sp	oike (SPK) 0.3	Off-scale (OS) 0.8
AMEL CR	iss Check	(A <u>0.0</u>	Реак него	nt Ratio (PH 0.3
Control C	oncordan	ice (CC) Weight =	1.0 (Only applicat	ole to controls)
SQ Weigh	ting			
Broad Pe	ak (BD)	0.5		
Allelic Lad	lder GQ V	Veighting		
Spike (SS	SPK/SPK)	1 💌	Off-scale (OS) 1 💌
SQ & GQ F	Ranges -			
		Pass Rang	e: Low C	uality Range:
Sizing Qu	ality:	From 0.75	to 1.0 From 0.0	to 0.25
Genotype	Quality:	From 0.75	to 1.0 From 0.0	to 0.25
				Reset Defaults
		Save	Cancel He	lp

Figure 10 SQ & GQ tab settings

(If needed) Create a size standard definition file

If you cannot use the default settings that are provided, create a new size standard definition file.

About the GS600_LIZ_(60-460) size standard definition file

The GS600_LIZ_(60-460) size standard definition file that is provided with GeneMapper^{III} *ID-X* Software and used with the Local Southern Method (size calling method) contains the following peaks: 60, 80, 100, 114, 120, 140, 160, 180, 200, 214, 220, 240, 250, 260, 280, 300, 314, 320, 340, 360, 380, 400, 414, 420, 440, and 460.

This size standard definition has been validated for use with this kit on the genetic analyzers listed in "Instruments and software compatibility" on page 16. If you need to create your own size standard definition, see "Create a size standard definition file" on page 56.

Create a size standard definition file

1. Select Tools > GeneMapper ID-X Manager to open the GeneMapper ID-X Manager.

	Find	Name Contair	ning:							
Projects	Analysis Methods	Table Setting	js Plo	t Setting	s Matrio	ces Size	e Standards	Report Se	ettings	
Nam	ie		Last Sav	/ed		Owner	Туре		Description	
CE_I	F_HID_GS500 (75-400))	2007-08	H09 21:23	3:52.288	gmidx	Adva	nced		
CE_I	F_HID_GS500 (75-450))	2007-08	-09 21:24	1:09.052	gmidx	Adva	nced		
CE_	G5_HID_G8500		2006-10	-11 21:12	2:27.0	gmidx	Adva	nced		
GS6	00_LIZ		2007-08	-26 18:43	3:19.0	gmidx	Adva	nced		
GS6	00_LIZ+Normalization	(60-460)	2012-08	-06 20:37	29.049	gmidx	Adva	nced		
GS6	00_LIZ+Normalization	(80-400)	2012-08	+06 20:37	7:37.785	gmidx	Adva	nced		
GS6	00_LIZ_(60-460)		2012-08	-06 20:21	:32.24	gmidx	Adva	nced		
GS6	00_LIZ_(80-400)		2007-08	i-27 09:43	3:19.0	gmidx	Adva	nced		
Rapi	dHITID_GS600_Size_	Standard	2022-09	-08 23:17	2:46.73	gmidx	Adva	nced		
Rapi	dHITID_SS3_Size_Sta	ndard	2018-10	-05 10:02	2:10.907	gmidx	Adva	nced		
<u>N</u> ew	Open Sav	e As I <u>n</u>	nport	Exp	ort					Dele

2. Click the Size Standards tab, then click New.

- 3. Specify settings in the Size Standard Editor.
 - a. Enter a name.
 - **b.** In the **Security Group** field, select the security group appropriate for your software configuration.
 - c. In the Size Standard Dye field, select Orange.

d. In the Size Standard Table, enter the peak sizes that correspond to your size standard. (*If needed*) Click **Insert** to add rows or click **Delete** to remove rows.

📌 Size Stan	dard Editor	×
<u>E</u> dit		
Size Standa	rd Description]
Name:		My_Size_Standard
Security Grou	up:	GeneMapper ID-X Security Group
Description:		
Size Standar	d Dye:	Orange 💌
Size Standa	rd Table	
	Size in Basepairs	Insert Delete
1	0.0	
2	0.0	
3	0.0	
4	0.0	
5	0.0	
6	0.0	
7	0.0	
	<u>O</u> K <u>C</u> an	cel Help

Analyze and edit sample files with GeneMapper[™] *ID-X* Software

- 1. In the **Project** window, select **Edit ► Add Samples to Project**, then navigate to the disk or directory that contains the sample files.
- 2. Apply analysis settings to the samples in the project.

Option	Action
Sample Type	Select the sample type for each sample, control, and allelic ladder in the project.
Analysis Method	Select the analysis method that you created in "Create an analysis method" on page 47.
Panel	Select the current kit panel. If needed, see "Check panel, bin, and stutter file versions on your computer" on page 41.
Size Standard	Select the GS600_LIZ_(60-460) size standard definition , or select another validated size standard definition, as described in "(If needed) Create a size standard definition file" on page 55.

- 3. Click Analyze.
- 4. In the Save Project dialog box, enter a name for the project, then click OK to start analysis.
 - The status bar displays the progress of analysis.
 - The table displays the row of the sample currently being analyzed in green (or red if analysis failed for the sample).
 - The **Analysis Summary** tab is displayed, and the **Genotypes** tab is available when the analysis is complete.

Examine or edit a project

Display electropherogram plots from the Samples and Genotypes tabs of the Project window to examine the data.

For more information on using the GeneMapper[™] *ID-X* Software

See "Related documentation" on page 127 for a list of available documents.

Experiments and results

Importance of validation	59
Experiment conditions	59
Laboratory requirements for internal validation	60
Developmental validation	60
Accuracy, precision, and reproducibility	64
Extra peaks in the electropherogram	65
Characterization of loci	84
Species specificity	85
Sensitivity	86
Stability	88
Mixture studies	91
Population data	94
Mutation rate	96
	Importance of validation . Experiment conditions . Laboratory requirements for internal validation . Developmental validation . Accuracy, precision, and reproducibility . Extra peaks in the electropherogram . Characterization of loci . Species specificity . Stability . Mixture studies . Population data . Mutation rate .

Importance of validation

Validation of a DNA typing procedure for human identification applications is an evaluation of the efficiency, reliability, and performance characteristics of the procedure. By challenging the procedure with samples that are commonly encountered in forensic and parentage laboratories, the validation process uncovers attributes and limitations that are critical for sound data interpretation (Sparkes, Kimpton, Watson, 1996; Sparkes, Kimpton, Gilbard, 1996; Wallin, 1998).

Experiment conditions

We conducted developmental validation experiments according to the updated and revised guidelines from the Scientific Working Group on DNA Analysis Methods (SWGDAM, December 2012). Based on these guidelines, we conducted experiments that comply with guidelines 2.0 and 3.0 and its associated subsections. This DNA methodology is not novel. (Moretti *et al.*, 2001; Frank *et al.*, 2001; Wallin *et al.*, 2002; and Holt *et al.*, 2000).

We used conditions that produced optimum PCR product yield and that met reproducible performance standards. It is our opinion that while these experiments are not exhaustive, they are appropriate for a manufacturer of STR kits intended for forensic and/or parentage testing use.

Laboratory requirements for internal validation

Each laboratory using this kit must perform internal validation studies. Performance of this kit is supported when used according to the following developmentally validated parameters. Modifications to the protocol should be accompanied by appropriate validation studies performed by the laboratory.

Developmental validation

Except where noted, all developmental validation studies were performed using the Veriti[™] Thermal Cycler according to the protocol described in the Perform PCR chapter.

SWGDAM guideline 2.2.1

"Developmental validation is the acquisition of test data and determination of conditions and limitations of a new or novel DNA methodology for use on forensic, database, known or casework reference samples." (SWGDAM, December 2012)

SWGDAM guideline 3.9.2

"The reaction conditions needed to provide the required degree of specificity and robustness should be determined. These include, but are not limited to, thermal cycling parameters, the concentration of primers, magnesium chloride, DNA polymerase, and other critical reagents." (SWGDAM, December 2012)

PCR components

We examined the concentration of each component in the kit. We established that the concentration of each component was within the range where data indicated that the amplification met the required performance criteria for specificity, sensitivity, and reproducibility.

For example, blood and buccal samples on treated-paper substrates or swab-sample lysates were amplified in the presence of varying concentrations of magnesium chloride, and the results were analyzed on a 3500xL Genetic Analyzer. The performance of the multiplex is most robust within ±20% of the optimal magnesium chloride concentration.

Figure 11 Electropherogram obtained from the amplification of a mixture of 1 ng of male DNA Control 007 and 1 μ g of female Control DNA 9947A with varying concentrations of magnesium chloride analyzed on a 3500xL Genetic Analyzer (Y-axis scale 0–13,000 RFU).

Figure 12 Electropherogram obtained from the amplification of a blood sample on an FTA[™] card amplified with the Yfiler[™] Plus kit in the presence of varying concentrations of magnesium chloride and analyzed on a 3500xL Genetic Analyzer (Y-axis scale 0–10,000 RFU).

Figure 13 Electropherograms obtained from the amplification of a buccal sample on an FTA[™] card amplified with the Yfiler[™] Plus kit in the presence of varying concentrations of magnesium chloride and analyzed on a 3500xL Genetic Analyzer (Y-axis scale 0–20,000 RFU).

Thermal cycling temperatures

Thermal cycling parameters were optimized using a Design of Experiments (DOE) approach that attempts to identify the combination of temperatures and hold times that produce the best assay performance. Optimal assay performance was determined through evaluation of assay sensitivity, peakheight balance, and resistance to PCR inhibitors.

The denaturation temperatures tested were 93°C, 94°C, and 95°C, all for 4-second hold times on the Veriti[™] Thermal Cycler. The annealing temperatures tested were 60.5, 61, 61.5, 62, and 62.5°C, for 1-minute hold times in the Veriti[™] Thermal Cycler. The PCR products were analyzed using the 3500xL Genetic Analyzer.

No preferential amplification was observed in the denaturation temperature experiments. Of the tested annealing temperatures, 61° C, 61.5° C, and 62° C produced robust profiles with no significant cross reactivity to 1 µg of female DNA. At 62.5° C, the yield of most loci was reduced. This poses no problem with routine thermal cycler calibration and when following the recommended amplification protocol. Preferential amplification was not observed at the standard annealing temperature of 61.5° C.

Figure 14 Electropherogram obtained from the amplification of a mixture of 1 ng of male DNA Control 007 and 1 µg of female Control DNA 9947A with varying annealing temperatures analyzed on a 3500xL Genetic Analyzer (Y-axis scale 0–8,000 RFU).

Figure 15 Electropherogram obtained from the amplification of a mixture of a blood sample on an FTA[™] card with varying annealing temperatures analyzed on a 3500xL Genetic Analyzer (Y-axis scale 0–12,000 RFU).

Figure 16 Electropherogram obtained from the amplification of a mixture of a buccal sample on an FTA[™] card with varying annealing temperatures analyzed on a 3500xL Genetic Analyzer (Y-axis scale 0–10,000 RFU).

Accuracy, precision, and reproducibility

SWGDAM guideline 3.5

"Precision and accuracy of the assay should be demonstrated: Precision characterizes the degree of mutual agreement among a series of individual measurements, values and/or results. Precision depends only on the distribution of random errors and does not relate to the true value or specified value. The measure of precision is usually expressed in terms of imprecision and computed as a standard deviation of the test results. Accuracy is the degree of conformity of a measured quantity to its actual (true) value. Accuracy of a measuring instrument is the ability of a measuring instrument to give responses close to a true value." (SWGDAM, December 2012)

Accuracy observation

The size differences that are typically observed between sample alleles and the Yfiler^M Plus Allelic Ladder alleles on the 3500xL Genetic Analyzer with POP-4^M Polymer are shown in Figure 17. The X-axis represents the nominal base pair sizes for the allelic ladder. The dashed lines parallel to the X-axis represent the ±0.5-bp windows. The Y-axis represents the deviation of each sample allele size from the corresponding allelic ladder allele size. All sample alleles are within ±0.5 bp from a corresponding allele in the allelic ladder.

Precision and size window description

Sizing precision enables the determination of accurate and reliable genotypes. The recommended method for genotyping is to use a ± 0.5 -bp "window" around the size obtained for each allele in the allelic ladder. A ± 0.5 -bp window allows for the detection and correct assignment of alleles. Any sample allele that sizes outside the specified window could be one of the following:

- · An "off-ladder" allele; that is, an allele of a size that is not represented in the allelic ladder
- An allele that does correspond to an allele in the allelic ladder, but whose size is just outside a window because of measurement error

The measurement error inherent in any sizing method can be defined by the degree of precision in sizing an allele multiple times. Precision is measured by calculating the standard deviation in the size values obtained for an allele that is run in several injections on a capillary electrophoresis instrument.

Precision and size window observation

To view a table of typical precision results, see Table 10.

Extra peaks in the electropherogram

Causes of extra peaks

Peaks other than the target alleles may be detected on the electropherogram. Causes for the appearance of extra peaks include stutter products, incomplete 3' A nucleotide addition (at the n-1 position), dye artifacts, and mixed DNA samples.

Extra peaks: Stutter

Stutter definition

Stutter is a well-characterized PCR artifact that refers to the appearance of a minor peak one repeat unit smaller than the target STR allele product (minus stutter), or less frequently, one repeat larger (plus stutter) (Butler, 2005; Mulero *et al.*, 2006). Sequence analysis of stutter products at tetranucleotide STR loci has revealed that the minus stutter product is missing a single tetranucleotide core repeat unit relative to the main allele (Walsh *et al.*, 1996). Although plus stutter is normally much less significant than minus stutter in STR loci with tetranucleotide repeats, the incidence of plus stutter may be more significant in trinucleotide repeat-containing loci.

Contact HID Support for more information on plus stutter.

The proportion of the stutter product relative to the main allele (percent stutter) is measured by dividing the height of the stutter peak by the height of the main allele peak.

Stutter observation

Peak heights were measured for amplified samples at the loci that are used in the kit. All data were generated on the 3500xL Genetic Analyzer. Some conclusions from these measurements and observations are:

- For each locus, the stutter percentage generally increases with allele length.
- Smaller alleles typically show a lower level of stutter relative to the longer alleles in each locus.
- Each allele in a locus displays a consistent stutter percentage.
- Peaks in the stutter position that are above the stutter filter percentage specified in the software are not filtered. (Stutter filter percentage is calculated as the mean stutter for the locus plus 3 standard deviations.) Peaks in the stutter position that have not been filtered and remain labeled can be further evaluated.
- The measurement of stutter percentage for allele peaks that are off-scale may be unusually high due to artificial truncation of the main allele peak.
- Stutter can be elevated when minus stutter and plus stutter overlap. This is typically observed when a given allele flanks another allele that is 2 repeat units away.
- The magnitude and/or variability of stutter may increase with low DNA input amounts.

Marker-specific plus stutter observed in the population study with the Yfiler[™] Plus kit is shown in Figure 18 through Figure 26.

Additional marker-specific plus stutter observed in the population study with the Yfiler[™] Plus kit is listed in "Stutter filter settings provided with the GeneMapper[™] ID-X Software" on page 76.

Figure 18 Minus stutter percentages for the DYF387S1 a/b, DYS19, and DYS385 a/b loci (purple=SID[™] dye, green=VIC[™] dye, and red=TAZ[™] dye).

Figure 19 Minus stutter percentages for the DYS389 I, DYS389 II, DYS390, and DYS391 loci (blue=6-FAM[™] dye, black=NED[™] dye, and green=VIC[™] dye).

Figure 20 Minus stutter percentages for the DYS392, DYS393, DYS437, and DYS438 loci (black=NED[™] dye, purple=SID[™] dye, and red=TAZ[™] dye).

Figure 21 Minus stutter percentages for the DYS439, DYS448, DYS449, and DYS456 loci (purple=SID[™] dye, green=VIC[™] dye, red=TAZ[™] dye, and black=NED[™] dye).

Figure 22 Minus stutter percentages for the DYS458, DYS460, DYS481, and DYS518 loci (green=VIC[™] dye, purple=SID[™] dye, and black=NED[™] dye).

Figure 23 Minus stutter percentages for the DYS533, DYS570, and DYS576 loci (purple=SID[™] dye, red=TAZ[™] dye, and blue=6-FAM[™] dye).

Figure 24 Minus stutter percentages for the DYS627, DYS635, and YGATAH4 loci (blue=6-FAM[™] dye and green=VIC[™] dye).

Figure 25 Example of reproducible 2-bp stutters in the DYS19 loci.

Figure 26 Example of reproducible 2-bp stutters in the DYS481 loci.

Stutter filter settings provided with the GeneMapper™ *ID-X* Software

The stutter filter settings are shown in Table 4 and Table 5. The data used to derive the settings are shown in Figure 18 through Figure 24. The proportion of the stutter product relative to the main allele (stutter percent) is measured by dividing the height of the stutter peak by the height of the main allele peak.

IMPORTANT! The values that are shown in the tables are the values that were determined during developmental validation studies using specific data sets. To determine the appropriate values to use for your applications, always perform internal validation studies.

Table 4	Percentages used i	n the minus	stutter filters	included with t	he GeneMapper [™]	<i>ID-X</i> Software

Locus	% Minus stutter (mean + 3 standard deviations)	% Mean stutter	% Minimum stutter	% Maximum stutter	2 bp % (mean + 3 standard deviations)
DYS576	15.15	10.44	5.95	20.27	Undetermined
DYS389I	9.16	6.08	3.47	10.88	Undetermined
DYS635	13.38	7.54	2.82	21.59	Undetermined
DYS389II	18.79	13.88	9.15	20.88	Undetermined
DYS627	15.18	9.90	5.14	28.17	2.71
DYS460	11.65	7.32	0.58	13.92	Undetermined
DYS458	15.31	10.58	3.58	16.74	Undetermined
DYS19	12.68	8.27	0.86	15.12	10.10
YGATAH4	11.53	7.75	4.07	22.14	Undetermined
DYS448	4.68	2.62	0.66	13.11	Undetermined
DYS391	9.99	6.58	3.23	13.25	Undetermined
DYS456	15.36	11.34	7.10	17.62	Undetermined
DYS390	13.58	8.74	4.72	16.21	Undetermined
DYS438	5.86	3.59	1.50	7.62	Undetermined
DYS392	16.94	10.27	3.27	31.35	Undetermined
DYS518	25.50	18.07	11.70	46.29	Undetermined
DYS570	15.65	10.88	4.12	21.49	Undetermined
DYS437	8.13	4.83	1.60	13.26	Undetermined
DYS385 a/b	18.32	10.02	3.26	21.54	Undetermined
DYS449	23.24	16.80	11.40	25.61	Undetermined

	P	24	
1.7	10	a 1	
	۰.		

Table 4 Percentages used in the minus stutter filters included with the GeneMapper ID-X Software *(continued)*

Locus	% Minus stutter (mean + 3 standard deviations)	% Mean stutter	% Minimum stutter	% Maximum stutter	2 bp % (mean + 3 standard deviations)
DYS393	14.07	9.97	6.63	19.17	Undetermined
DYS439	9.89	6.74	3.55	11.98	Undetermined
DYS481	28.55	19.98	12.02	28.95	9.55
DYF387S1 a/b	15.71	9.96	4.41	30.78	Undetermined
DYS533	12.00	7.94	2.37	18.11	1.88

Table 5	Percentages used	in the plus stutter	filters included with th	e GeneMapper™	ID-X Software
---------	------------------	---------------------	--------------------------	---------------	---------------

Locus	% Plus stutter (mean + 3 standard deviations)	% Mean stutter	% Minimum stutter	% Maximum stutter	2 bp % (mean + 3 standard deviations)
DYS576	3.38	1.15	0.42	8.45	Undetermined
DYS3891	3.45	0.81	0.23	8.94	Undetermined
DYS635	3.30	1.06	0.26	6.94	Undetermined
DYS389II	3.73	1.01	0.33	9.35	Undetermined
DYS627	2.62	0.95	0.26	6.40	Undetermined
DYS460	4.27	1.17	0.34	24.71	Undetermined
DYS458	2.52	0.95	0.34	5.86	Undetermined
DYS19	3.72	1.26	0.43	14.81	3.42
YGATAH4	2.27	0.94	0.33	4.55	Undetermined
DYS448	2.29	0.76	0.25	3.40	Undetermined
DYS391	3.41	0.98	0.33	9.02	Undetermined
DYS456	3.74	2.03	0.73	7.09	Undetermined
DYS390	3.51	1.19	0.35	3.36	Undetermined
DYS438	2.76	0.97	0.35	2.87	Undetermined
DYS392	11.00	6.32	1.91	16.65	Undetermined
DYS518	4.85	1.78	0.69	13.46	Undetermined
DYS570	2.88	1.15	0.45	10.50	Undetermined

Locus	% Plus stutter (mean + 3 standard deviations)	% Mean stutter	% Minimum stutter	% Maximum stutter	2 bp % (mean + 3 standard deviations)
DYS437	1.65	0.70	0.23	2.28	Undetermined
DYS385 a/b	3.70	1.12	0.19	13.17	Undetermined
DYS449	4.20	1.50	0.57	12.83	Undetermined
DYS393	4.95	2.07	0.59	22.21	Undetermined
DYS439	3.39	1.24	0.43	14.17	Undetermined
DYS481	5.59	2.59	0.96	21.03	Undetermined
DYF387S1 a/b	Undetermined	Undetermined	Undetermined	Undetermined	Undetermined
DYS533	4.60	1.71	0.70	5.73	Undetermined

 Table 5
 Percentages used in the plus stutter filters included with the GeneMapper ID-X Software (continued)

Extra peaks: Addition of 3' A nucleotide

3' A nucleotide addition definition

Many DNA polymerases can catalyze the addition of a single nucleotide (predominantly adenosine) to the 3' ends of double-stranded PCR products (Clark, 1988; Magnuson *et al.*, 1996). This nontemplate addition results in a PCR product that is one nucleotide longer than the actual target sequence. The PCR product with the extra nucleotide is referred to as the "+A" form.

3' A observation

The efficiency of +A addition is related to the particular sequence of the DNA at the 3⁻ end of the PCR product. The kit includes two main design features that promote maximum +A addition:

- The primer sequences have been optimized to encourage +A addition.
- The PCR chemistry allows complete +A addition with a short final incubation for 22 minutes at 60°C.

This final extension step gives the DNA polymerase additional time to complete +A addition to all double-stranded PCR products. Examples of incomplete and normal +A addition are shown in Figure 27. Final extension incubation for longer than the recommended time can result in double +A addition, in which two nontemplate adenosine residues are added to the PCR product. Double +A addition can cause "shoulders" on the right side of main allele peaks, and is therefore to be avoided.

Due to improved PCR buffer chemistry, the lack of +A addition is generally less of an issue with the Yfiler[™] Plus kit than with earlier generation kits. However, "shouldering" of allele peaks can still be observed if the amount of input DNA is greater than recommended concentration. Amplification of excess input DNA can also result in off-scale data.

Figure 27 Omitting the final extension step results in shoulders on main allele peaks due to incomplete A nucleotide addition. Examples shown are the smaller amplicons of FAM[™], NED[™], and SID[™] dye channel data from a 3500xL Genetic Analyzer using the Yfiler[™] Plus kit.

Extra peaks: Artifacts

Artifact definition

Artifacts and anomalies are seen in all molecular biological systems. Artifacts are typically reproducible. Anomalies are non-reproducible, intermittent occurrences that are not observed consistently in a system (for example, spikes and baseline noise).

Artifact observation

Additional reproducible DNA-dependent artifacts have been characterized and recorded in Table 6. It is important to consider possible noise and artifacts when interpreting data from the Yfiler[™] Plus kit on the 3500/3500xL Genetic Analyzer and 3130/3130x/ Genetic Analyzer.

Table 6 DNA-dependent artifacts

Artifact	Color	Size	Comment
FAM270	Blue	270–271 bp	Minor cross-reactive product observed with female DNA >1 μ g.
FAM280	Blue	280–281 bp	Minor cross-reactive product observed with female DNA >1 μ g.
FAM348	Blue	348–349 bp	Specific to the cell-line derived DNA Control 007 in the kit.
DYS391 (n-10)	Green	n – 10 bp	Specific to DYS391. Minor cross-reactive product observed with male DNA > 1.0 ng.
TAZ140	Red	139–140 bp	Minor cross-reactive product observed with female DNA >1 μ g.
TAZ144	Red	144–145 bp	Minor cross-reactive product observed with female DNA >1 μ g.
TAZ225-260	Red	225–260 bp	Multiple minor cross-reactive products observed with female DNA >1 μ g.
TAZ412	Red	412–413 bp	Cross-reactive product observed with female DNA >100 ng. Occurs outside of the read region. Does not impact interpretation.
VIC70	Green	70 bp	Sporadic PCR artifact. Occurs outside of the VIC [™] dye read region. Does not impact interpretation.
DYS437 (n–5)	Red	n – 5 bp	Specific to DYS437. Sporadic, non-target specific artifact.
DYS437 (n-12)	Red	n – 12 bp	Specific to DYS437. Sporadic, non-target specific artifact.
DYS437 (n-16)	Red	n – 12 bp	Specific to DYS437. Sporadic, non-target specific artifact.

Figure 28 Example of the TAZ412 reproducible artifact in data produced on the 3500/3500xL Genetic Analyzer.

Figure 29 Example of the FAM348 reproducible artifact in data produced on the 3500/3500xL Genetic Analyzer.

Figure 30 Example of the DYS391 (n–10) reproducible artifact in data produced on the 3500/3500xL Genetic Analyzer.

Figure 31 Examples of the DYS437 artifacts in data produced on the 3500/3500xL Genetic Analyzer

Characterization of loci

SWGDAM guideline 3.1

"The basic characteristics of a genetic marker should be determined and documented." (SWGDAM, December 2012)

Loci in this kit

This section describes basic characteristics of the 27 Y-STR loci that are amplified with the Yfiler[™] Plus kit. Most of these loci have been extensively characterized by other laboratories.

Nature of polymorphisms

DYS392 and DYS481 are trinucleotide repeats, DYS438 is a pentanucleotide repeat and DYS448 is a hexanucleotide repeat. Their allele differences result from differences in the number of repeat units 3-bp, 5-bp, and 6-bp respectively. The remaining Yfiler[™] Plus kit loci are tetranucleotide short tandem repeat (STR) loci. The length differences among alleles of these particular loci result from differences in the number of 4-bp repeat units.

We have sequenced all the alleles in the Yfiler[™] Plus kit Allelic Ladder. In addition, other groups in the scientific community have sequenced alleles at some of these loci (Redd *et al.*, 2002; www.cstl.nist.gov/biotech/strbase/y_strs.htm). Among the various sources of sequence data on the

loci, there is consensus on the repeat patterns and structure of the STRs (Mulero et al., 2014; Gusmao et al., 2006).

Inheritance

The Centre d'Etude du Polymorphisme Humain (CEPH) has collected DNA from families of Utah Mormon, French Venezuelan, and Amish descent. These DNA sets have been extensively studied all over the world and are routinely used to characterize the mode of inheritance of various DNA loci. Each family set contains three generations, generally including four grandparents, two parents, and several offspring. Consequently, the CEPH family DNA sets are ideal for studying inheritance patterns (Begovich *et al.*, 1992).

Mapping

The Yfiler[™] Plus kit loci have been mapped, and the location on the Y-chromosome is known based on the nucleotide sequence of the Y-chromosome. The Genbank accession numbers for representative sequences are: DYS19 (X77751, AC017019), DYS385 (AC022486, Z93950), DYS389 (AC011289, AF140635), DYS390 (AC011289), DYS391 (G09613, AC011302), DYS392 (G09867, AC06152), DYS393 (G09601, AC06152), DYS437 (AC002992), DYS438 (AC002531), DYS439 (AC002992), DYS448 (AC025227.6), DYS456 (AC010106.2), DYS458 (AC010902.4), DYS635 (G42676, AC011751), DYS635 (G42673), DYS449 (AC051663), DYS481 (FJ828747.1), DYS533 (AC053516), DYS570 (AC012068), DYS576 (AC010104), DYS518 (FJ828760) and DYS627 (BV208976).

Species specificity

SWGDAM Guideline 3.2

"The ability to detect genetic information from non-targeted species (e.g., detection of microbial DNA in a human assay) should be determined. The detection of genetic information from non-targeted species does not necessarily invalidate the use of the assay, but may help define the limits of the assay." (SWGDAM, December 2012)

Nonhuman study observation

The Yfiler[™] Plus kit provides the required specificity for detecting human alleles. Species specificity testing was performed to show that there is no cross-reactivity with nonhuman DNA that may be present in forensic casework samples.

The following species were tested (in the specified amounts) using standard PCR and capillary electrophoresis conditions for the kit:

- Primates-Gorilla, chimpanzee, and macaque (1.0 ng each)
- Non-primates Mouse, dog, pig, rat, sheep, horse, chicken, and cow (10.0 ng each)
- **Microorganisms**—Candida albicans, Neisseria gonorrhoeae, Escherichia coli 0157:H7, Bacillus subtilis, Staphylococcus aureus, and Lactobacillus rhamnosus (5 ng each)

Results were evaluated for the presence of any amplified peaks that would indicate cross-reactivity of the kit with any of these non-human species.

The chimpanzee and gorilla DNA samples produced partial profiles in the 100–330 bp region. The remaining species tested did not yield reproducible detectable products.

Example electropherogram results from the species specificity tests are shown in Figure 32.

Figure 32 Representative electropherograms from a species specificity study including positive and negative control (Y-axis scale 0–200 or 0–3,200 RFU).

Sensitivity

SWGDAM guideline 3.3

"The ability to obtain reliable results from a range of DNA quantities, to include the upper and lower limits of the assay, should be evaluated." (SWGDAM, December 2012)

Effect of DNA quantity on results

If too much DNA is added to the PCR reaction, the increased amount of PCR product that is generated can result in the following:

- Fluorescence intensity that exceeds the linear dynamic range for detection by the capillary electrophoresis instrument ("off-scale" data). Off-scale data are a problem because:
 - Quantification (peak height and area) for off-scale peaks is not accurate. For example, an allele
 peak that is off-scale can cause a corresponding stutter peak to appear higher in relative
 intensity, therefore increasing the calculated percent stutter.
 - Multicomponent analysis of off-scale data is not accurate. This inaccuracy results in poor spectral separation ("pull-up").
- Incomplete +A nucleotide addition.

To address these problems, rerun the amplification reaction using less DNA.

If too little DNA is added to the PCR reaction, the total number of allele copies added to the PCR reaction could be extremely low. Unbalanced amplification of the alleles can occur because of stochastic fluctuation.

Sample collection factors that can affect DNA quantity

The Yfiler[™] Plus kit has been optimized for a PCR reaction volume of 25 µL to overcome the PCR inhibition expected when amplifying:

- · Blood samples that are obtained directly from unpurified 1.2-mm treated paper discs
- Buccal cells that are obtained directly from unpurified 1.2-mm treated paper discs (with the addition of Prep-n-Go[™] Buffer)
- Buccal swab sample lysate that is prepared using Prep-n-Go™ Buffer

Depending on the following conditions, DNA quantities present on the 1.2-mm disc may vary from laboratory to laboratory:

- Volume of blood that is spotted onto the treated paper
- Collecting devices that are used
- Collection methods that are applied
- Swab-to-paper transfer protocol that is used

It is essential to optimize the PCR conditions for the blood sample type and spotting protocol. See "(Before first use of the kit) Optimize PCR cycle number" on page 24.

Sensitivity observation

The amplification results of different input DNA amounts are shown in Figure 33. The optimal amount of input male DNA added to the Yfiler[™] Plus kit is 0.5–1.0 ng for 30-cycle PCR when using extracted and purified DNA. The final DNA concentration should be 0.05–0.10 ng/µL, so that 0.5–1.0 ng of male DNA is added to the 10-µL PCR reaction.

If the sample contains degraded DNA, amplification of additional DNA can be beneficial.

To determine an appropriate minimum peak height threshold for your instruments and data, perform internal validation studies.

Figure 33 Effect of amplifying 1 ng, 500 pg, 250 pg, 125 pg, 62 pg, and 31 pg of male DNA Control 007 using two voltage conditions. Data analyzed using the 3500xL Genetic Analyzer (Y-axis scale 0– 12,000 RFU).

Stability

SWGDAM guideline 3.4

"The ability to obtain results from DNA recovered from biological samples deposited on various substrates and subjected to various environmental and chemical insults should be evaluated. In most instances, assessment of the effects of these factors on new forensic DNA procedures is not required. However, if substrates and/or environmental and/or chemical insults could potentially affect the analytical process, then the process should be evaluated to determine the effects of such factors." (SWGDAM, December 2012)

Lack of amplification of some loci

As with any multi-locus system, the possibility exists that not every locus amplifies. This possibility is most often observed when the DNA sample contains PCR inhibitors or when the DNA sample has been severely degraded. Valuable information can be obtained from partial profiles.

Degraded DNA

As the average size of degraded DNA approaches the size of the target sequence, the amount of PCR product generated is reduced. This is due to the reduced number of intact templates in the size range necessary for amplification.

Degraded DNA was prepared to examine the potential for preferential amplification of loci. High molecular weight DNA was incubated with the enzyme DNase I for varying amounts of time. The DNA was examined by agarose gel analysis to determine the average size of the DNA fragments at each time point.

2 ng of degraded DNA (or 1 ng undegraded DNA) was amplified using the Yfiler[™] Plus kit. As the DNA became increasingly degraded, the loci became undetectable according to size. The loci failed to robustly amplify in the order of decreasing size as the extent of degradation progressed (Figure 34).

Figure 34 Amplification of A3121 DNA samples sonicated and incubated with increasing doses of DNase I. Panels 1, 2, 3, and 4 correspond to 0, 4, 5, and 6 Units of DNase I. Note that the Y-axis scale is magnified for more degraded samples, which generate lower peak heights.

Effect of inhibitors-humic acid

Traces of humic acid can inhibit the PCR amplification of DNA evidence collected from soil. Amplification of 1.0 ng of DNA Control 007 in the presence of increasing amounts of humic acid was performed using the Yfiler[™] Plus kit (Figure 35). The concentrations of humic acid tested were 0, 100, and 250 ng/µL. The same concentrations were tested with the Yfiler[™] kit for comparison. At 250 ng/µL, neither kit yielded amplified products.

Figure 35 Electropherograms for the Yfiler[™] Plus kit and Yfiler[™] kit show the improved performance of the Yfiler[™] Plus kit in the presence of humic acid compared to the Yfiler[™] kit [Y-axis scale 0–20,000 RFU (top two panels), 0–30,000 RFU (third panel), and 0–4,000 RFU (bottom panel)].

Mixture studies

SWGDAM guideline 3.8

"The ability to obtain reliable results from mixed source samples should be determined." (SWGDAM, December 2012)

Mixture study overview

Evidence samples may contain DNA from more than one individual. The possibility of multiple contributors should be considered when interpreting the results. Perform studies to determine a minimum peak height threshold to avoid typing when stochastic effects are likely to interfere with accurate interpretation of mixtures.

Evidence samples that contain body fluids and/or tissues originating from more than one individual are an important category of forensic casework.

It is essential that the DNA typing system is able to detect DNA mixtures. Typically, mixed samples can be distinguished from single-source samples by:

- The presence of more than one allele at Y-STR loci
- The presence of a peak at a stutter position that is significantly greater in percentage than typically observed in a single-source sample

If an unusually low interlocus balance is observed for one locus, and there are no other indications that the sample is a mixture, re-amplify and reanalyze the sample to determine if the imbalance is reproducible. Possible causes of imbalance at a locus are:

- Degraded DNA
- Presence of inhibitors
- Extremely low amounts of input DNA
- A mutation in one of the primer binding sites
- Presence of an allele containing a rare sequence that does not amplify as efficiently as the other allele

Male/female mixture studies

In the case of Y-STRs, the female DNA component is not amplified by the Y-chromosome-specific primers. Male/female mixture studies were performed up to a ratio of 1:4,000 using 3 different female DNA samples. The amount of female DNA was kept constant at 1 µg and the amount of male control DNA was changed. The female DNA did not cause any interference with the interpretation of the male Y-STR profile as shown in Figure 36.

Low-level artifacts with female DNA have been occasionally observed in the FAM™ (270-280 bp) and TAZ[™] (225–260 bp) dyes. In general, these artifact peaks will not affect interpretation due to their morphology and intensity.

Figure 36 Amplification of male DNA Control 007 in the presence of female Control DNA 9947A. Profiles shown in the panels from top to bottom: 1 ng of male DNA, 1 ng of male DNA with 1 µg of female DNA, 500 pg of male DNA with 1 µg of female DNA, 250 pg of male DNA with 1 µg of female DNA, 1 µg of female DNA. The Y-axis scale is magnified for lower input amounts of male DNA samples, which generate lower peak heights. The Y-axis scale is 0–200 RFU for the 1-µg female input.

Male/male mixture studies

Forensic samples may contain body fluids or tissues that originate from more than one male. Mixtures of two male DNA samples were examined at various ratios (1:1 to 1:15). The total amount of genomic input DNA mixed at each ratio was 1 ng.

Locus	Sample A	Sample B
DYS576	15	19
DYS389I	14	13
DYS635	21	24
DYS389II	31	29
DYS627	21	21
DYS460	10	11
DYS458	17	17
DYS19	15	15
YGATAH4	12	13
DYS448	21	19
DYS391	10	11
DYS456	13	15

 Table 7
 Haplotypes of two male DNA samples

Locus	Sample A	Sample B	
DYS390	21	24	
DYS438	12	12	
DYS392	11	13	
DYS518	38	37	
DYS570	19	17	
DYS437	14	15	
DYS385 a/b	16, 19	11, 14	
DYS449	29	30	
DYS393	14	13	
DYS439	11	12	
DYS481	27	22	
DYF387S1 a/b	36, 39	35, 37	
DYS533	11	13	

 Table 7
 Haplotypes of two male DNA samples (continued)

A representative electropherogram of 1-ng total male/male DNA mixture studies is shown in Figure 37. The limit of detection is when the minor component is present at approximately one-tenth of the concentration of the major component. The limit of detection for the minor component is influenced by the combination of genotypes in the mixture.

Figure 37 Mixtures of two male DNA samples (1:8 ratio, 125 pg: 875 pg) 1-ng input DNA. The alleles attributable to the minor component, even when the major component shares an allele, are highlighted.

Population data

SWGDAM YSTR guideline 10.1

"The laboratory should establish guidelines for the number of Y-STR loci used for searches of

population databases." (SWGDAM, January 2014)

Population data overview

All Y-STR loci analyzed in commercial kits are physically linked on the Y-chromosome. Due to the lack of recombination, the entire Y-chromosome haplotype must be treated as a single locus. Haplotype frequencies are estimated using the counting method. The counting method involves searching a given haplotype against a database to determine the number of times the haplotype was observed in that database. The frequency of the haplotype in the database is then estimated by dividing the count by the number of haplotypes searched. (SWGDAM, January 2014)

Population samples used in these studies

The Yfiler[™] Plus kit was used to generate the population data provided in this section. Whole blood samples were provided by the Interstate Blood Bank (Memphis, Tennessee) and Boca Biolistics (Coconut Creek, Florida). Samples were collected in the United States (with no geographical preference) from randomly selected individuals of known ethnicities. Ethnicities of sample donors were:

- African-American-557 samples
- U.S. Asian-340 samples
- U.S. Caucasian-533 samples
- U.S. Hispanic-391 samples

DNA was extracted with a 6100 Nucleic Acid Prep Station.

The Yfiler™ Plus kit contains loci for which extensive population data are available.

In addition to the haplotypes that we observed and recorded in our databases, other alleles have been published or reported to us by other laboratories (see the STRBase at https://strbase.nist.gov/, see the YHARD at www.yhrd.org, and see the U.S. Y-STR database at www.usystrdatabase.org).

Gene diversity values

The Yfiler[™] Plus gene diversity in four populations are listed in Table 8.

Gene diversity (D) = $\frac{n(1-\Sigma p_i^{\,2})}{n-1}$

where: n=sample size, pi=allele frequency (Johnson et al., 2003)

Table 8 Yfiler[™] Plus gene diversity values across 4 different U.S. populations, listed as percentages

Locus	African-American (n=557)	U.S. Caucasian (n=533)	U.S. Hispanic (n=391)	U.S. Asian (n=340)
DYS576	0.807	0.768	0.769	0.799
DYS389 I	0.504	0.527	0.567	0.679
DYS635	0.716	0.646	0.713	0.786
DYS389 II	0.746	0.676	0.729	0.770
DYS627	0.838	0.842	0.853	0.812
DYS460	0.573	0.537	0.571	0.675
DYS458	0.750	0.766	0.800	0.820
DYS19	0.726	0.459	0.632	0.703
YGATAH4	0.590	0.585	0.580	0.606
DYS448	0.707	0.583	0.697	0.755
DYS391	0.445	0.540	0.561	0.437
DYS456	0.615	0.737	0.700	0.603
DYS390	0.646	0.684	0.656	0.699
DYS438	0.551	0.581	0.688	0.547
DYS392	0.445	0.592	0.664	0.710
DYS518	0.843	0.806	0.807	0.867
DYS570	0.806	0.738	0.799	0.820
DYS437	0.504	0.577	0.592	0.476
DYS385 a/b	0.942	0.854	0.904	0.973
DYS449	0.857	0.783	0.818	0.882
DYS393	0.587	0.363	0.442	0.662
DYS439	0.629	0.625	0.682	0.669
DYS481	0.857	0.724	0.790	0.821

Locus	African-American (n=557)	U.S. Caucasian (n=533)	U.S. Hispanic (n=391)	U.S. Asian (n=340)
DYF387S1 a/b	0.941	0.874	0.913	0.945
DYS533	0.598	0.576	0.591	0.644

Table 8Yfiler Plus gene diversity values across 4 different U.S. populations, listed aspercentages (continued)

Analyzing the population data

In addition to the alleles that were observed and recorded in the Thermo Fisher Scientific databases, other known alleles have been published or reported to us by other laboratories. Some of these alleles occur at a low frequency and include several microvariants (Furedi *et al.*, 1999; Schoske *et al.*, 2004).

Discriminatory capacity of haplotypes

The discriminatory capacity was determined by dividing the number of different haplotypes by the number of samples in that population (Schoske *et al.*, 2004). A unique haplotype is defined as one that occurs only once in a given population. The number of unique haplotypes is usually less than the number of different haplotypes in any given population.

The discriminatory capacity (DC) and the number of unique haplotypes (UH) for each Y-STR marker combination are listed in Table 9.

Y-STR marker combination	African-American (n = 557)		U.S. Caucasian (n = 533)		U.S. Hispanic (n = 391)		U.S. Asian (n = 340)	
	DC (%)	UH	DC (%)	UH	DC (%)	UH	DC (%)	UH
Yfiler™	98.2	547	95.7	510	95.9	375	91.5	311
Yfiler™ Plus	99.6	555	98.5	525	98.0	383	94.4	321

Table 9 Discriminatory capacity and number of unique haplotypes for 4 U.S. populations

Mutation rate

The most accurate method of estimating Y-STR mutation rates is the direct observation of transmission between father and son. A large-scale Y-STR analysis of mutation rates was performed with 2,000 DNA-confirmed father-son pairs and encompassed the Yfiler[™] Plus marker set (Ballantyne *et al.*, 2010, 2012, and 2014).

Table of typical precision results

	3130 <i>xl</i>		3500		3500xL		
Allele	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean	
DYF3	87S1 a/b						
30	264.16–264.33	0.038-0.055	264.90-264.93	0.045-0.063	264.85-264.89	0.038-0.057	
31	268.02-268.20	0.035-0.054	268.81–268.83	0.052-0.064	268.74-268.78	0.045-0.059	
32	271.91–272.10	0.031-0.056	272.69–272.72	0.042-0.053	272.63-272.68	0.040-0.058	
33	275.87–276.03	0.035-0.054	276.65–276.69	0.045-0.068	276.58-276.63	0.046-0.054	
34	279.72–279.90	0.038-0.055	280.54-280.58	0.049–0.072	280.47-280.51	0.049-0.062	
35	283.52–283.71	0.044-0.062	284.33–284.37	0.037-0.063	284.26-284.30	0.049-0.057	
36	287.35–287.55	0.043-0.054	288.17–288.22	0.049-0.066	288.12-288.16	0.042-0.057	
37	291.25–291.44	0.034-0.055	292.10-292.11	0.044–0.075	292.01-292.06	0.042-0.062	
38	295.03–295.22	0.043-0.065	295.89–295.91	0.047–0.067	295.79–295.85	0.037-0.062	
39	299.06–299.26	0.045-0.055	299.93–299.96	0.064-0.068	299.85–299.90	0.046-0.063	
40	302.75-302.95	0.039-0.054	303.61-303.65	0.048-0.073	303.52-303.60	0.047-0.065	
41	306.64-306.86	0.035-0.066	307.56–307.60	0.038-0.087	307.48-307.53	0.050-0.062	
42	310.49–310.70	0.047-0.060	311.44–311.47	0.062-0.080	311.35–311.41	0.046-0.066	
43	314.40-314.62	0.041-0.073	315.40–315.43	0.046-0.096	315.30–315.37	0.045-0.070	
44	318.47–318.69	0.039-0.062	319.50–319.52	0.048-0.089	319.40-319.47	0.047-0.071	
DYS1	9						
9	183.90–183.94	0.023-0.030	184.04–184.06	0.028-0.048	183.99–184.01	0.026-0.039	
10	188.07–188.11	0.022-0.036	188.20–188.22	0.026-0.035	188.16–188.18	0.026-0.040	

Table 10	Example of p	recision result	s of seven inje	ctions of a	Yfiler Plus	Allelic Ladder	run on a	3130xl
Genetic A	nalyzer, 3500	Genetic Analy:	zer, and 3500x	L Genetic	Analyzer (continued)		

	3130 <i>xl</i>		3500		3500xL		
Allele	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean	
11	192.11-192.13	0.026-0.036	192.26–192.28	0.026-0.040	192.22-192.24	0.025-0.037	
12	196.10–196.13	0.018-0.039	196.24–196.27	0.032-0.046	196.21-196.23	0.032-0.041	
13	200.17–200.21	0.019-0.034	200.30-200.33	0.029-0.046	200.28-200.29	0.037–0.043	
14	204.09-204.13	0.020-0.036	204.24–204.27	0.027-0.038	204.21-204.21	0.029-0.037	
15	208.05-208.09	0.018-0.028	208.22-208.24	0.029-0.043	208.16-208.18	0.027-0.038	
16	212.03–212.05	0.023-0.032	212.20–212.26	0.015-0.053	212.15–212.16	0.024-0.046	
17	216.07-216.10	0.023-0.032	216.22–216.25	0.016-0.052	216.18–216.20	0.029-0.044	
18	220.14–220.19	0.020-0.034	220.30-220.34	0.033-0.046	220.27-220.29	0.020-0.043	
19	224.15-224.20	0.024-0.035	224.34–224.35	0.040-0.058	224.30-224.31	0.036-0.047	
DYS3	85 a/b						
6	225.25-225.31	0.029-0.041	225.10-225.12	0.022-0.050	225.07-225.09	0.036-0.048	
7	229.25–229.33	0.027-0.041	229.12-229.14	0.028-0.044	229.08-229.11	0.042-0.047	
8	233.37–233.44	0.026-0.042	233.21–233.24	0.026-0.045	233.19–233.21	0.038-0.048	
9	237.40-237.47	0.028-0.037	237.24–237.26	0.023-0.066	237.22–237.25	0.033-0.046	
10	241.50-241.57	0.026-0.049	241.31–241.34	0.035-0.052	241.30-241.31	0.023-0.038	
11	245.53-245.61	0.024-0.040	245.37–245.38	0.022-0.046	245.34–245.37	0.031-0.046	
12	249.71–249.81	0.027-0.038	249.53–249.55	0.005-0.034	249.51–249.54	0.034-0.043	
13	253.74–253.84	0.025-0.037	253.55–253.57	0.021-0.040	253.55–253.57	0.030-0.046	
14	257.69–257.79	0.027-0.047	257.50-257.52	0.031-0.047	257.51-257.52	0.028-0.041	
15	261.66–261.75	0.023-0.039	261.46-261.49	0.031-0.040	261.48-261.50	0.033-0.043	
16	265.67–265.76	0.027-0.041	265.50-265.51	0.018-0.044	265.50-265.52	0.030-0.046	
17	269.72-269.82	0.022-0.047	269.54–269.58	0.022-0.042	269.55-269.57	0.036-0.046	
18	273.73–273.83	0.026-0.045	273.54–273.58	0.027-0.055	273.54–273.57	0.029-0.047	
19	277.83–277.93	0.025-0.046	277.64–277.66	0.040-0.058	277.65–277.67	0.031-0.042	
20	281.85-281.95	0.025-0.044	281.66-281.70	0.035-0.044	281.67–281.69	0.033-0.044	
21	285.85-285.94	0.029-0.044	285.65-285.69	0.036-0.043	285.67–285.68	0.030-0.043	
22	289.82-289.93	0.029-0.052	289.63-289.65	0.037-0.050	289.63-289.66	0.030-0.040	

AU.1.	3130 <i>xl</i>		3500		3500xL		
Allele	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean	
23	293.78–293.89	0.031-0.046	293.58–293.62	0.030-0.040	293.58–293.60	0.032-0.047	
24	297.79–297.89	0.029-0.042	297.57–297.60	0.037-0.065	297.56–297.60	0.034-0.050	
25	301.75-301.85	0.025-0.052	301.56-301.58	0.038-0.045	301.55-301.57	0.020-0.050	
26	305.71-305.82	0.034-0.039	305.51-305.53	0.018-0.054	305.51-305.53	0.026-0.039	
27	309.71-309.82	0.036-0.044	309.50-309.55	0.028-0.042	309.52-309.54	0.032-0.044	
28	313.78–313.87	0.032-0.051	313.53–313.58	0.005-0.051	313.55–313.58	0.043-0.049	
DYS3	891						
9	146.74–146.78	0.025-0.034	146.98–147.01	0.019–0.044	146.81–146.84	0.025-0.042	
10	150.83–150.87	0.026-0.033	151.06-151.09	0.019–0.039	150.90–150.91	0.032-0.041	
11	154.86–154.91	0.024-0.031	155.09–155.11	0.030-0.042	154.92–154.94	0.034-0.038	
12	158.98–159.04	0.027-0.036	159.22-159.24	0.007-0.030	159.04–159.07	0.021-0.035	
13	163.19–163.26	0.020-0.031	163.41–163.43	0.028-0.045	163.25–163.27	0.026-0.038	
14	167.12–167.19	0.018-0.034	167.33–167.35	0.015-0.030	167.18–167.19	0.027-0.033	
15	171.17–171.21	0.017-0.040	171.34–171.37	0.022-0.039	171.21–171.22	0.021-0.038	
16	175.19–175.24	0.020-0.025	175.37–175.40	0.020-0.046	175.23–175.24	0.026-0.039	
17	179.23–179.28	0.013-0.034	179.40–179.41	0.005-0.032	179.25–179.27	0.041-0.045	
DYS3	8911						
24	265.02-265.11	0.025-0.032	265.16–265.20	0.023-0.060	265.12-265.12	0.030-0.044	
25	269.11–269.20	0.024-0.040	269.23–269.25	0.030-0.052	269.17–269.18	0.030-0.042	
26	273.08–273.17	0.021-0.043	273.23–273.24	0.026-0.040	273.15–273.17	0.028-0.042	
27	277.22–277.32	0.024-0.039	277.36–277.39	0.036-0.054	277.29–277.31	0.030-0.042	
28	281.15-281.25	0.020-0.048	281.29–281.32	0.032-0.047	281.21-281.22	0.034-0.043	
29	285.01-285.10	0.019-0.041	285.14–285.16	0.029-0.043	285.07–285.09	0.028-0.041	
30	289.17–289.26	0.026-0.047	289.31–289.33	0.027-0.039	289.23-289.25	0.034-0.039	
31	293.15–293.24	0.023-0.043	293.27–293.31	0.037-0.040	293.19–293.21	0.023-0.037	
32	297.02-297.11	0.027-0.035	297.14–297.15	0.029-0.059	297.04–297.07	0.028-0.044	
33	300.97-301.06	0.025-0.041	301.10-301.13	0.039-0.049	301.02-301.03	0.037-0.043	

Table 10	Example of precision res	ults of seven injections of	of a Yfiler Plus A	Ilelic Ladder run on	a 3130xl
Genetic A	nalyzer, 3500 Genetic An	alyzer, and 3500xL Gene	tic Analyzer (co	ntinued)	

Allala	3130 <i>xI</i>		3500		3500xL		
Allele	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean	
34	304.81-304.89	0.024-0.035	304.93-304.96	0.025-0.060	304.85-304.86	0.031-0.038	
35	308.89–308.97	0.027-0.041	309.01-309.03	0.036-0.046	308.93-308.94	0.040-0.050	
DYS3	90						
17	144.14–144.23	0.026-0.044	144.14–144.19	0.038-0.042	144.09–144.11	0.029-0.039	
18	148.04–148.12	0.020-0.038	148.06–148.10	0.021-0.051	147.98–148.01	0.035-0.043	
19	151.96-152.04	0.026-0.037	151.99–152.02	0.026-0.043	151.92–151.93	0.029-0.039	
20	156.15–156.25	0.027-0.046	156.16–156.20	0.026-0.041	156.09–156.12	0.025-0.038	
21	160.16-160.24	0.031-0.039	160.17–160.18	0.000-0.043	160.09–160.10	0.025-0.037	
22	164.21-164.30	0.024-0.039	164.21–164.24	0.020-0.061	164.15–164.17	0.030-0.041	
23	168.34–168.42	0.026-0.039	168.31–168.34	0.030-0.048	168.25–168.28	0.032-0.044	
24	172.34–172.42	0.024-0.038	172.30–172.32	0.032-0.055	172.25–172.27	0.025-0.033	
25	176.33–176.41	0.024-0.034	176.30–176.33	0.029-0.044	176.24–176.26	0.027-0.037	
26	180.35–180.44	0.023-0.036	180.33–180.34	0.032-0.041	180.27–180.29	0.026-0.041	
27	184.33–184.42	0.019-0.030	184.32–184.34	0.040-0.052	184.26–184.28	0.031-0.044	
28	188.44–188.53	0.026-0.041	188.41–188.43	0.032-0.050	188.36–188.38	0.029-0.043	
29	192.49–192.58	0.027-0.042	192.46–192.48	0.022-0.047	192.41–192.44	0.034-0.042	
DYS3	91						
5	352.78-352.85	0.024-0.035	353.42-353.45	0.038-0.057	353.34–353.36	0.034-0.049	
6	356.84–356.91	0.032-0.042	357.46-357.51	0.032-0.054	357.39-357.42	0.036-0.051	
7	360.69–360.78	0.030-0.036	361.40–361.43	0.026-0.057	361.32-361.35	0.040-0.049	
8	364.75-364.85	0.034-0.045	365.47–365.49	0.019-0.035	365.40-365.43	0.033-0.057	
9	368.74–368.85	0.023-0.042	369.47–369.50	0.024-0.060	369.39–369.43	0.033-0.046	
10	372.75–372.87	0.020-0.040	373.47–373.48	0.036-0.076	373.40-373.44	0.032-0.050	
11	376.75-376.87	0.029-0.044	377.47-377.47	0.019-0.047	377.38-377.42	0.037-0.044	
12	380.81-380.90	0.031-0.052	381.44–381.48	0.018-0.050	381.36–381.39	0.028-0.049	
13	384.93-385.02	0.029-0.045	385.56-385.60	0.020-0.063	385.47-385.50	0.037-0.042	
14	388.98-389.07	0.024-0.038	389.60-389.62	0.023-0.050	389.50-389.54	0.028-0.036	

AU.1.	3130 <i>x/</i>		3500		3500xL		
Allele	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean	
15	393.02-393.08	0.026-0.046	393.63–393.67	0.024-0.043	393.55–393.57	0.033–0.045	
16	397.05–397.12	0.031-0.042	397.66–397.70	0.022-0.057	397.58–397.61	0.032-0.047	
DYS3	92						
4	273.67–273.77	0.028-0.036	274.35–274.38	0.045-0.056	274.25–274.28	0.039-0.047	
5	276.63-276.74	0.027-0.044	277.36–277.39	0.048-0.063	277.25–277.28	0.030-0.048	
6	279.61–279.73	0.021-0.038	280.32-280.35	0.033-0.051	280.22-280.25	0.045-0.054	
7	282.64–282.75	0.023-0.032	283.35–283.39	0.042-0.056	283.26–283.29	0.037–0.048	
8	285.54–285.66	0.026-0.030	286.23-286.25	0.050-0.065	286.12-286.16	0.032-0.048	
9	288.52-288.60	0.027-0.036	289.12-289.14	0.040-0.057	289.00-289.04	0.034-0.044	
10	291.25–291.38	0.026-0.040	291.97–292.00	0.049-0.065	291.87–291.89	0.034-0.052	
11	294.30-294.42	0.026-0.039	295.04–295.05	0.051-0.072	294.91–294.94	0.030-0.055	
12	297.26–297.38	0.026-0.038	297.96–297.99	0.036-0.058	297.84–297.88	0.035-0.058	
13	300.19–300.30	0.031-0.045	300.89–300.90	0.037-0.067	300.77-300.80	0.038-0.047	
14	303.01-303.13	0.027-0.036	303.73-303.74	0.048-0.061	303.59–303.63	0.036-0.050	
15	306.00-306.12	0.028-0.040	306.70-306.74	0.043-0.070	306.59-306.63	0.033-0.052	
16	309.03-309.15	0.026-0.044	309.71-309.73	0.041-0.073	309.58-309.62	0.038-0.053	
17	311.93–312.06	0.027-0.044	312.67-312.70	0.027-0.064	312.54–312.58	0.027-0.047	
18	314.96–315.09	0.029-0.040	315.75–315.77	0.019-0.060	315.61–315.65	0.042-0.051	
19	318.11–318.23	0.022-0.035	318.88–318.90	0.028-0.056	318.75–318.78	0.035-0.047	
20	321.21-321.35	0.022-0.039	321.97-322.00	0.049-0.063	321.84–321.88	0.027-0.058	
DYS3	93						
7	90.33–90.36	0.021-0.032	90.35–90.39	0.027-0.037	90.23-90.25	0.029-0.037	
8	94.35–94.36	0.024-0.037	94.37–94.42	0.020-0.032	94.27–94.28	0.033-0.041	
9	98.51–98.53	0.020-0.030	98.53–98.56	0.028-0.039	98.43-98.44	0.040-0.044	
10	102.63-102.64	0.014-0.029	102.67-102.70	0.021-0.052	102.56-102.57	0.033-0.040	
11	106.89-106.90	0.019-0.027	106.94-106.96	0.026-0.037	106.82-106.84	0.029-0.037	
12	110.79–110.81	0.024-0.030	110.85–110.88	0.039-0.056	110.74–110.76	0.031-0.041	

Table 10	Example of p	recision rea	sults of s	seven injec	tions of a	a Yfiler Plu	s Allelic L	adder run	on a 3	3130xl
Genetic A	nalyzer, 3500	Genetic Ar	nalyzer, a	nd 3500xL	Genetic	Analyzer	(continued	d)		

Allele	3130 <i>xl</i>		3500		3500xL		
Allele	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean	
13	114.80–114.81	0.017-0.028	114.87–114.91	0.020-0.041	114.76–114.78	0.026-0.035	
14	118.72–118.74	0.021-0.029	118.79–118.81	0.033-0.043	118.67–118.69	0.010-0.032	
15	122.51-122.53	0.024-0.036	122.61-122.62	0.031-0.044	122.48–122.49	0.030-0.041	
16	126.56-126.59	0.017-0.029	126.66–126.68	0.029-0.046	126.54–126.56	0.036-0.041	
17	130.54–130.55	0.015-0.033	130.62–130.66	0.023-0.036	130.51–130.53	0.027-0.041	
18	134.51–134.54	0.019-0.029	134.61–134.64	0.025-0.038	134.52–134.53	0.030-0.043	
DYS4	37						
10	177.93–177.98	0.027-0.035	178.26–178.28	0.031-0.053	178.20–178.22	0.030-0.047	
11	181.97–182.01	0.026-0.036	182.29–182.32	0.030-0.045	182.24–182.26	0.040-0.046	
12	186.02-186.07	0.021-0.041	186.35–186.38	0.027-0.041	186.31-186.32	0.031-0.046	
13	189.98–190.02	0.020-0.039	190.28–190.31	0.020-0.051	190.24–190.26	0.033-0.043	
14	194.03–194.07	0.023-0.041	194.34–194.37	0.028-0.049	194.29–194.31	0.041-0.044	
15	198.15–198.20	0.025-0.031	198.49–198.51	0.017-0.040	198.46–198.47	0.035-0.046	
16	202.13-202.19	0.030-0.037	202.47-202.50	0.026-0.047	202.44-202.45	0.035-0.041	
17	206.08-206.12	0.023-0.034	206.42-206.45	0.026-0.056	206.36-206.38	0.033-0.040	
18	210.03-210.07	0.022-0.036	210.38–210.41	0.031-0.054	210.33–210.35	0.038-0.045	
DYS4	38						
6	207.14-207.22	0.024-0.032	207.69–207.73	0.044-0.059	207.67–207.68	0.033-0.040	
7	212.16–212.22	0.025-0.032	212.70–212.71	0.030-0.049	212.66–212.68	0.030-0.054	
8	217.23-217.31	0.022-0.038	217.78–217.82	0.029-0.050	217.76-217.77	0.032-0.038	
9	222.32-222.41	0.023-0.032	222.87-222.90	0.023-0.064	222.86-222.87	0.030-0.040	
10	227.38-227.47	0.027-0.030	227.91-227.94	0.016-0.068	227.90-227.93	0.036-0.054	
11	232.43-232.52	0.032-0.037	232.96-232.98	0.031-0.065	232.95-232.98	0.032-0.046	
12	237.48-237.58	0.021-0.038	238.03-238.04	0.035-0.047	238.00-238.03	0.032-0.049	
13	242.64-242.71	0.024-0.033	243.14-243.17	0.027-0.052	243.14-243.16	0.025-0.037	
14	247.82-247.87	0.022-0.031	248.30-248.32	0.040-0.050	248.28-248.31	0.033-0.046	
15	252.87-252.90	0.022-0.037	253.31-253.33	0.027-0.056	253.31-253.34	0.024-0.041	

Allele	3130 <i>xl</i>		3500		3500xL		
Allele	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean	
16	257.80-257.85	0.014-0.029	258.24–258.26	0.021-0.041	258.24–258.27	0.034-0.039	
DYS4	39						
6	149.93–150.01	0.016-0.027	150.28–150.31	0.021-0.046	150.23-150.24	0.028-0.039	
7	154.05–154.12	0.020-0.036	154.38–154.41	0.033-0.055	154.32–154.34	0.034-0.041	
8	158.15–158.23	0.031-0.036	158.51–158.52	0.031-0.052	158.43–158.46	0.025-0.046	
9	162.21-162.30	0.024-0.034	162.54–162.59	0.036-0.046	162.49–162.50	0.036-0.043	
10	166.33–166.41	0.023-0.029	166.65–166.69	0.033–0.039	166.60-166.62	0.026-0.044	
11	170.27–170.36	0.022-0.032	170.60-170.64	0.039-0.054	170.56–170.59	0.027-0.045	
12	174.30–174.39	0.020-0.032	174.64–174.67	0.029-0.050	174.58–174.61	0.028-0.045	
13	178.38–178.47	0.027-0.047	178.72–178.75	0.032-0.052	178.66–178.70	0.041-0.046	
14	182.44–182.52	0.029-0.035	182.78–182.81	0.035-0.051	182.74–182.76	0.025-0.045	
15	186.45–186.53	0.024-0.033	186.79–186.82	0.029-0.052	186.76–186.78	0.036-0.044	
16	190.51–190.60	0.025-0.042	190.86–190.88	0.026-0.048	190.83–190.85	0.037–0.047	
17	194.58–194.66	0.024-0.040	194.93–194.96	0.027-0.054	194.90–194.93	0.034-0.047	
DYS4	48						
14	277.79–277.88	0.032-0.045	278.38–278.41	0.033-0.059	278.39–278.41	0.040-0.063	
15	283.72-283.80	0.021-0.044	284.33–284.34	0.030-0.065	284.31–284.34	0.034-0.048	
16	289.61–289.69	0.033-0.043	290.22–290.25	0.031-0.062	290.21-290.24	0.031-0.050	
17	295.50–295.59	0.031-0.045	296.12-296.14	0.039-0.060	296.11-296.13	0.039–0.059	
18	301.34–301.43	0.036-0.043	301.98–302.00	0.040-0.061	301.95-302.00	0.040-0.066	
19	307.17-307.28	0.035-0.043	307.85–307.88	0.042-0.061	307.83–307.87	0.037-0.050	
20	313.18–313.29	0.038-0.048	313.87–313.91	0.051-0.079	313.86–313.90	0.040-0.060	
21	319.33–319.45	0.036-0.049	320.06-320.09	0.035-0.052	320.06-320.10	0.039-0.066	
22	325.50-325.63	0.041-0.053	326.21-326.23	0.038-0.062	326.22-326.26	0.049-0.060	
23	331.46-331.61	0.036-0.056	332.16-332.19	0.039-0.070	332.16-332.20	0.045-0.066	
24	337.39-337.53	0.038-0.051	338.10-338.14	0.024-0.077	338.11-338.15	0.040-0.060	

Allala	3130 <i>xl</i>		3500		3500xL		
Allele	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean	
DYS4	49						
22	325.50-325.57	0.027-0.062	325.58-325.61	0.037-0.049	325.63-325.67	0.035-0.049	
23	329.59-329.64	0.027-0.064	329.65-329.67	0.028-0.054	329.71-329.73	0.039–0.060	
24	333.63-333.66	0.025-0.062	333.66–333.72	0.025-0.041	333.75–333.76	0.032-0.045	
25	337.66–337.69	0.031-0.058	337.68–337.72	0.033-0.045	337.76–337.78	0.027-0.040	
26	341.69-341.75	0.029-0.052	341.72-341.77	0.025-0.042	341.79–341.81	0.039-0.051	
27	345.76-345.87	0.029-0.050	345.80-345.84	0.031-0.049	345.87–345.88	0.032-0.043	
28	349.82-349.93	0.028-0.061	349.87–349.89	0.018-0.051	349.93–349.94	0.029-0.039	
29	353.87–353.98	0.025-0.053	353.92–353.95	0.020-0.060	353.98–353.99	0.034-0.044	
30	357.92-358.03	0.028-0.060	357.97–358.00	0.027-0.042	358.03-358.06	0.035-0.050	
31	361.97-362.04	0.036-0.045	362.01-362.04	0.021-0.040	362.07-362.09	0.032-0.059	
32	365.98–366.06	0.034-0.042	366.01-366.04	0.038-0.055	366.08-366.10	0.035-0.041	
33	369.99–370.07	0.029-0.042	370.00-370.04	0.038-0.048	370.08-370.11	0.030-0.047	
34	373.99–374.09	0.025-0.044	374.02-374.04	0.027-0.061	374.09-374.12	0.033-0.053	
35	377.99–378.08	0.032-0.047	378.01–378.06	0.040-0.055	378.10-378.11	0.039-0.047	
36	382.03-382.12	0.034-0.043	382.03-382.08	0.027-0.053	382.12-382.13	0.031-0.051	
37	386.08-386.18	0.022-0.043	386.09-386.12	0.025-0.045	386.17-386.19	0.034-0.048	
38	390.12-390.22	0.020-0.042	390.14–390.16	0.025-0.044	390.21-390.23	0.036-0.044	
39	394.14–394.28	0.030-0.043	394.18–394.20	0.029-0.049	394.24–394.26	0.037-0.043	
40	398.17–398.31	0.029-0.053	398.21-398.25	0.024-0.047	398.27-398.29	0.030-0.038	
DYS4	56						
10	76.25–76.30	0.033-0.043	76.25–76.28	0.044-0.050	76.08–76.10	0.031-0.042	
11	80.51-80.56	0.016-0.036	80.54-80.56	0.025-0.047	80.40-80.42	0.026-0.037	
12	84.72-84.78	0.023-0.035	84.74-84.77	0.009-0.043	84.63-84.64	0.028-0.035	
13	88.92-88.97	0.020-0.036	88.95-88.99	0.021-0.035	88.84-88.85	0.024-0.036	
14	93.11–93.16	0.022-0.036	93.13–93.17	0.024-0.047	93.03-93.05	0.028-0.039	
15	97.28–97.34	0.024-0.037	97.30–97.35	0.027-0.038	97.23–97.24	0.021-0.035	

Allele	3130 <i>x</i> /		3500		3500xL		
	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean	
16	101.47–101.53	0.022-0.031	101.52–101.55	0.010-0.033	101.42-101.43	0.034-0.040	
17	105.65–105.72	0.021-0.030	105.73–105.75	0.025-0.038	105.62-105.64	0.023-0.035	
18	109.81–109.88	0.022-0.037	109.89–109.92	0.023-0.056	109.77–109.80	0.027-0.038	
19	113.92–113.98	0.029-0.032	114.01–114.04	0.028-0.060	113.89–113.91	0.032-0.038	
20	117.90–117.95	0.022-0.035	118.01-118.02	0.026-0.044	117.88–117.88	0.022-0.029	
21	121.86-121.93	0.022-0.036	121.97-122.01	0.040-0.044	121.84–121.86	0.036-0.042	
22	125.85–125.93	0.027-0.033	125.98–126.00	0.032-0.048	125.85–125.87	0.032-0.038	
23	129.87–129.94	0.029-0.033	130.00–130.04	0.042-0.058	129.88–129.89	0.032-0.040	
24	133.89–133.96	0.026-0.033	134.04–134.05	0.030-0.041	133.92–133.94	0.024-0.044	
DYS4	58						
11	119.84–119.98	0.027-0.034	120.25–120.28	0.039–0.065	120.11-120.13	0.039–0.041	
12	123.66–123.81	0.026-0.038	124.10-124.13	0.042-0.056	123.96–123.98	0.026-0.040	
13	127.52–127.66	0.025-0.041	127.97-128.01	0.035-0.053	127.82–127.85	0.027-0.040	
14	131.37–131.53	0.033-0.038	131.84–131.90	0.040-0.069	131.70–131.74	0.024-0.041	
15	135.26–135.41	0.020-0.043	135.77–135.80	0.035-0.059	135.62-135.65	0.030-0.038	
16	139.17–139.32	0.027-0.046	139.68–139.72	0.041-0.051	139.56–139.58	0.028-0.044	
17	143.06–143.24	0.030-0.044	143.61–143.64	0.028-0.049	143.47–143.52	0.030-0.040	
18	147.14–147.31	0.030-0.045	147.70–147.72	0.033-0.054	147.56–147.59	0.035-0.047	
19	151.22–151.39	0.029-0.050	151.77–151.83	0.040-0.060	151.65–151.68	0.034-0.043	
20	155.22–155.39	0.028-0.047	155.79–155.82	0.031-0.062	155.65-155.68	0.029-0.049	
21	159.12–159.30	0.028-0.049	159.71-159.73	0.028-0.041	159.57-159.61	0.027-0.042	
22	163.07–163.26	0.027-0.050	163.65–163.69	0.039-0.063	163.52–163.55	0.035-0.048	
23	166.99–167.18	0.019-0.060	167.58–167.61	0.028-0.059	167.45–167.48	0.030-0.042	
24	170.92–171.11	0.028-0.064	171.52–171.54	0.042-0.063	171.38–171.42	0.033-0.044	
DYS460							
7	79.58–79.61	0.031-0.038	79.58–79.60	0.053-0.060	79.38–79.40	0.023-0.039	
8	83.76-83.80	0.021-0.040	83.75-83.78	0.042-0.058	83.58-83.60	0.026-0.037	

Table 10	Example of p	recision rea	sults of s	seven injec	tions of a	a Yfiler Plu	s Allelic L	adder run	on a 3	3130xl
Genetic A	nalyzer, 3500	Genetic Ar	nalyzer, a	nd 3500xL	Genetic	Analyzer	(continued	d)		

Allele	3130 <i>x</i> /		3500		3500xL				
	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean			
9	87.96-87.98	0.025-0.037	87.92-87.97	0.027-0.035	87.77-87.79	0.029-0.038			
10	92.12-92.15	0.024-0.042	92.10-92.13	0.023-0.043	91.95–91.97	0.031-0.044			
11	96.29–96.31	0.028-0.041	96.26-96.30	0.030-0.049	96.11–96.13	0.030-0.040			
12	100.46-100.48	0.023-0.045	100.44-100.48	0.039–0.048	100.28-100.30	0.034-0.042			
13	104.65-104.67	0.028-0.035	104.64–104.67	0.030-0.038	104.48-104.50	0.025-0.039			
14	108.80-108.84	0.028-0.039	108.79–108.82	0.025-0.040	108.63-108.66	0.027-0.033			
DYS4	DYS481								
17	206.82-206.84	0.018-0.034	206.89–206.93	0.023-0.040	206.96-206.97	0.025-0.038			
18	209.80–209.81	0.018-0.032	209.86-209.88	0.027-0.044	209.92–209.93	0.030-0.036			
19	212.76-212.78	0.026-0.036	212.86–212.87	0.009-0.050	212.89–212.91	0.037-0.045			
20	215.78–215.80	0.021-0.035	215.86–215.88	0.016-0.042	215.91–215.94	0.027-0.042			
21	218.85–218.87	0.018-0.033	218.91–218.94	0.010-0.032	218.98–218.99	0.029-0.040			
22	221.88-221.90	0.024-0.039	221.93-221.96	0.020-0.042	222.00-222.02	0.038-0.048			
23	224.88-224.90	0.023-0.033	224.94–224.97	0.025-0.037	225.02-225.03	0.039-0.049			
24	227.88-227.90	0.021-0.032	227.95-227.97	0.037-0.055	228.03-228.04	0.037-0.043			
25	230.90–230.92	0.017-0.034	230.96–230.99	0.035-0.054	231.03-231.04	0.030-0.049			
26	233.91–233.93	0.022-0.033	233.97–233.98	0.027-0.049	234.04-234.06	0.032-0.042			
27	236.91–236.93	0.018-0.034	236.98-237.00	0.023-0.053	237.06-237.07	0.033-0.037			
28	239.94–239.95	0.023-0.033	239.99–240.01	0.000-0.048	240.07-240.08	0.026-0.048			
29	243.03-243.05	0.023-0.031	243.08-243.10	0.026-0.046	243.15-243.16	0.030-0.034			
30	246.11–246.13	0.023-0.031	246.14-246.16	0.025-0.052	246.21-246.23	0.029-0.040			
31	249.17–249.21	0.023-0.032	249.18–249.21	0.009-0.038	249.27–249.28	0.030-0.038			
32	252.15–252.20	0.025-0.033	252.19–252.20	0.020-0.045	252.27–252.28	0.029-0.039			
DYS518									
32	332.35-332.38	0.025-0.054	332.32-332.35	0.027-0.045	332.32-332.35	0.038-0.046			
33	336.40-336.41	0.029-0.050	336.35-336.38	0.024-0.045	336.36-336.39	0.030-0.050			
34	340.43-340.48	0.026-0.047	340.36-340.40	0.005-0.044	340.39-340.41	0.005-0.041			

Allele	3130 <i>x</i> /		3500		3500xL			
	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean		
35	344.52-344.59	0.025-0.051	344.45-344.49	0.032-0.051	344.48–344.50	0.035-0.052		
36	348.60-348.70	0.024-0.047	348.54–348.57	0.011-0.044	348.56-348.59	0.027-0.042		
37	352.67-352.76	0.025-0.059	352.60-352.64	0.033–0.053	352.63-352.65	0.029-0.042		
38	356.74–356.82	0.026-0.054	356.69-356.71	0.038-0.049	356.70-356.73	0.038-0.054		
39	360.82-360.88	0.025-0.044	360.73–360.77	0.036-0.049	360.77–360.79	0.035-0.058		
40	364.83-364.91	0.021-0.043	364.76-364.78	0.026-0.046	364.80-364.82	0.030-0.041		
41	368.87–368.92	0.021-0.036	368.78–368.80	0.032-0.059	368.82-368.84	0.035-0.046		
42	372.87–372.94	0.030-0.038	372.78–372.83	0.033-0.043	372.83–372.85	0.030-0.041		
43	376.91–376.98	0.026-0.043	376.81–376.83	0.026-0.057	376.84–376.88	0.038-0.053		
44	380.95–381.01	0.024-0.034	380.83–380.86	0.041-0.052	380.88–380.89	0.030-0.049		
45	385.00-385.07	0.024-0.038	384.89-384.92	0.019-0.045	384.93–384.95	0.029-0.046		
46	389.05–389.14	0.027-0.035	388.96–388.97	0.026-0.054	388.99–389.00	0.038-0.048		
47	393.09–393.19	0.023-0.043	393.00–393.02	0.033-0.049	393.04–393.06	0.025-0.053		
48	397.12–397.24	0.034-0.047	397.04–397.08	0.028-0.054	397.08–397.12	0.031-0.052		
49	401.16-401.26	0.025-0.039	401.08-401.10	0.018-0.041	401.10-401.13	0.031-0.051		
DYS5	DYS533							
7	338.37-338.42	0.028-0.035	338.61-338.63	0.036-0.049	338.55-338.56	0.020-0.036		
8	342.44-342.48	0.024-0.040	342.64–342.69	0.027-0.043	342.61-342.62	0.040-0.046		
9	346.54-346.56	0.026-0.038	346.72-346.77	0.028-0.044	346.68-346.70	0.032-0.047		
10	350.61-350.63	0.026-0.039	350.82-350.85	0.026-0.053	350.75-350.76	0.033-0.048		
11	354.68-354.69	0.024-0.035	354.87-354.91	0.024-0.037	354.81-354.83	0.028-0.051		
12	358.73–358.77	0.026-0.035	358.93–358.97	0.015-0.059	358.88-358.90	0.029-0.046		
13	362.76-362.78	0.023-0.035	362.96-362.99	0.018-0.043	362.90-362.93	0.028-0.045		
14	366.76-366.79	0.021-0.035	366.95-366.99	0.029-0.048	366.92-366.95	0.034-0.043		
15	370.78-370.82	0.022-0.029	370.99–371.01	0.032-0.064	370.94-370.97	0.031-0.048		
16	374.79–374.82	0.033-0.034	374.99–375.02	0.030-0.047	374.93–374.96	0.035-0.047		
17	378.80-378.83	0.025-0.039	379.01-379.03	0.010-0.045	378.94–378.97	0.041-0.049		

Allele	3130 <i>xl</i>		3500		3500xL			
	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean		
DYS570								
10	97.99–98.02	0.021-0.034	98.02-98.04	0.026-0.044	97.95–97.96	0.035-0.043		
11	102.12-102.15	0.024-0.034	102.13-102.16	0.023-0.041	102.08-102.09	0.028-0.034		
12	106.23-106.27	0.021-0.029	106.26-106.29	0.032-0.046	106.20-106.21	0.026-0.036		
13	110.33–110.35	0.022-0.033	110.35–110.37	0.032-0.044	110.28–110.30	0.028-0.043		
14	114.36–114.38	0.018-0.030	114.40–114.41	0.024-0.038	114.32–114.34	0.017-0.037		
15	118.29–118.32	0.021-0.030	118.32–118.34	0.022-0.037	118.23–118.25	0.035–0.038		
16	122.21-122.24	0.023-0.041	122.23–122.26	0.032-0.041	122.15-122.17	0.027-0.036		
17	126.18–126.21	0.026-0.041	126.21-126.22	0.030-0.042	126.13-126.14	0.027-0.042		
18	130.16–130.19	0.021-0.041	130.18–130.20	0.015-0.039	130.11-130.12	0.028-0.034		
19	134.15–134.19	0.027-0.038	134.18–134.21	0.025-0.038	134.11–134.13	0.026-0.041		
20	138.19–138.23	0.026-0.043	138.20–138.25	0.027-0.046	138.14–138.16	0.027-0.036		
21	142.27–142.30	0.024-0.033	142.29–142.31	0.024-0.037	142.23–142.25	0.034-0.040		
22	146.38–146.42	0.021-0.028	146.39–146.42	0.020-0.033	146.34–146.35	0.028-0.038		
23	150.50-150.55	0.027-0.031	150.49–150.51	0.035-0.046	150.45-150.47	0.025-0.039		
24	154.62-154.67	0.023-0.040	154.61–154.64	0.027-0.039	154.57–154.60	0.027-0.036		
25	158.75–158.81	0.024-0.038	158.73–158.75	0.034-0.038	158.69–158.70	0.016-0.029		
26	162.84–162.88	0.027-0.042	162.80-162.82	0.019-0.042	162.76-162.79	0.031-0.040		
DYS5	76							
10	72.26–72.37	0.028-0.050	72.79–72.82	0.041-0.073	72.45–72.47	0.038-0.045		
11	76.42–76.55	0.027-0.043	77.02–77.03	0.059-0.066	76.69–76.71	0.028-0.047		
12	80.56-80.68	0.020-0.038	81.18-81.20	0.039-0.064	80.88-80.89	0.036-0.040		
13	84.65-84.77	0.021-0.033	85.27-85.30	0.040-0.052	84.98-85.01	0.031-0.037		
14	88.71-88.86	0.029-0.041	89.35-89.38	0.040-0.068	89.07-89.10	0.029-0.040		
15	92.79–92.93	0.026-0.043	93.42-93.47	0.039-0.057	93.17–93.19	0.024-0.040		
16	96.84–96.99	0.029-0.039	97.49–97.54	0.041-0.055	97.24–97.26	0.029-0.040		
17	100.90-101.05	0.021-0.045	101.59–101.63	0.027-0.051	101.34–101.35	0.038-0.039		

Table 10Example of precision results of seven injections of a Yfiler Plus Allelic Ladder run on a 3130xlGenetic Analyzer, 3500 Genetic Analyzer, and 3500xL Genetic Analyzer (continued)

Allala	3130 <i>xl</i>		3500		3500xL	
Allele	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean
18	104.98–105.14	0.029-0.040	105.69–105.72	0.038-0.069	105.41-105.44	0.026-0.037
19	109.02-109.19	0.026-0.053	109.73-109.77	0.033-0.071	109.47-109.49	0.025-0.043
20	113.02–113.20	0.025-0.050	113.76–113.79	0.037–0.080	113.49–113.50	0.034-0.040
21	116.93–117.09	0.029-0.042	117.65–117.67	0.033–0.065	117.38–117.40	0.031-0.040
22	120.77-120.95	0.025-0.042	121.51-121.54	0.042-0.074	121.23-121.27	0.026-0.041
23	124.66-124.83	0.029-0.042	125.43–125.46	0.041-0.081	125.14–125.17	0.030-0.039
24	128.56-128.74	0.030-0.050	129.36-129.38	0.062-0.069	129.07-129.09	0.028-0.040
25	132.47–132.66	0.025-0.042	133.28–133.32	0.035-0.072	132.99–133.04	0.029-0.036
DYS6	27					
11	323.89-324.05	0.049-0.059	325.01-325.03	0.048-0.094	324.93-324.98	0.052-0.066
12	327.79-327.94	0.043-0.066	328.92-328.97	0.038-0.095	328.84-328.89	0.058-0.074
13	331.66–331.84	0.033-0.053	332.81-332.85	0.053-0.080	332.73-332.77	0.048-0.070
14	335.53-335.71	0.046-0.062	336.67-336.72	0.045-0.086	336.61-336.65	0.055-0.063
15	339.38–339.53	0.040-0.056	340.53–340.57	0.054-0.086	340.45–340.50	0.044-0.070
16	343.29–343.42	0.040-0.055	344.42-344.47	0.025-0.103	344.35-344.42	0.048-0.056
17	347.21-347.32	0.040-0.060	348.36-348.40	0.050-0.101	348.28-348.33	0.047-0.059
18	351.11-351.22	0.037-0.061	352.27-352.31	0.052-0.097	352.19-352.24	0.050-0.071
19	355.07-355.22	0.047-0.062	356.26-356.29	0.050-0.098	356.17-356.23	0.046-0.063
20	358.90-359.06	0.047-0.060	360.11-360.17	0.048-0.114	360.02-360.10	0.053-0.072
21	362.69-362.85	0.038-0.064	363.92-363.94	0.059-0.092	363.83-363.90	0.053-0.066
22	366.53-366.69	0.049-0.070	367.77–367.80	0.040-0.095	367.69-367.75	0.051-0.067
23	370.36–370.53	0.045-0.064	371.62-371.66	0.044-0.075	371.53–371.61	0.054-0.064
24	374.21-374.37	0.054-0.069	375.47-375.52	0.074-0.077	375.39–375.46	0.062-0.070
25	378.05-378.21	0.059-0.074	379.32–379.36	0.055-0.067	379.23-379.32	0.058-0.067
26	381.90-382.06	0.062-0.080	383.22-383.27	0.059-0.086	383.12-383.20	0.056-0.074
27	385.79–385.94	0.064-0.079	387.10-387.14	0.069-0.094	387.02-387.10	0.046-0.073

Table 10Example of precision results of seven injections of a Yfiler Plus Allelic Ladder run on a 3130xlGenetic Analyzer, 3500 Genetic Analyzer, and 3500xL Genetic Analyzer (continued)

Allala	3130 <i>xl</i>		3500		3500xL	
Allele	Standard deviation	Mean	Standard deviation	Mean	Standard deviation	Mean
DYS6	35					
15	191.34–191.39	0.026-0.034	191.90–191.92	0.036-0.052	191.76–191.77	0.034-0.046
16	195.40–195.44	0.024-0.038	195.95–195.98	0.030-0.049	195.82–195.83	0.033-0.047
17	199.45–199.49	0.025-0.036	200.00-200.01	0.000-0.056	199.87–199.88	0.042-0.046
18	203.42-203.46	0.020-0.036	203.96–203.98	0.021-0.048	203.82-203.83	0.031-0.044
19	207.37-207.41	0.021-0.038	207.92–207.94	0.022-0.040	207.77–207.79	0.030-0.040
20	211.35–211.38	0.027-0.036	211.89–211.91	0.017-0.060	211.75–211.77	0.034-0.041
21	215.41-215.44	0.022-0.034	215.96–215.99	0.016-0.059	215.82–215.83	0.030-0.052
22	219.43–219.48	0.027-0.039	219.99–220.01	0.000-0.048	219.85–219.87	0.045-0.046
23	223.44-223.49	0.023-0.037	224.00-224.02	0.033-0.061	223.86-223.89	0.038-0.053
24	227.31-227.38	0.024-0.036	227.88-227.92	0.034-0.051	227.76-227.77	0.034-0.043
25	231.45-231.52	0.023-0.036	232.03-232.06	0.034-0.064	231.91–231.93	0.037-0.050
26	235.35–235.42	0.021-0.030	235.93–235.95	0.039–0.053	235.81–235.84	0.032-0.042
27	239.49–239.55	0.032-0.036	240.07–240.09	0.000-0.058	239.95–239.97	0.043-0.046
28	243.60-243.65	0.026-0.038	244.17–244.19	0.023-0.035	244.05-244.09	0.031-0.048
29	247.70-247.75	0.022-0.032	248.24–248.27	0.017-0.039	248.14-248.17	0.038-0.046
30	251.73-251.77	0.021-0.037	252.25–252.29	0.020-0.052	252.14-252.18	0.032-0.045
YGAT	AH4					
8	235.91–235.96	0.022-0.032	236.18–236.22	0.031-0.055	236.15-236.16	0.030-0.047
9	239.92–239.96	0.023-0.036	240.19–240.22	0.031-0.065	240.16-240.18	0.028-0.055
10	244.04-244.09	0.023-0.030	244.31–244.34	0.033-0.047	244.27–244.28	0.030-0.046
11	248.14-248.15	0.018-0.033	248.39–248.41	0.041-0.052	248.35-248.36	0.032-0.047
12	252.15-252.17	0.020-0.034	252.37-252.39	0.020-0.040	252.35-252.37	0.031-0.040
13	256.07-256.10	0.024-0.039	256.31-256.33	0.029-0.039	256.28-256.30	0.027-0.042
14	259.97-260.00	0.015-0.032	260.24-260.27	0.000-0.049	260.19-260.23	0.032-0.047
15	263.94–263.99	0.019-0.042	264.22-264.25	0.019-0.040	264.20-264.22	0.034-0.045

Troubleshooting

Observation	Possible cause	Recommended action
Faint or no signal from DNA Control 007 and the test samples at all loci	The incorrect volume of master mix or primer set was used.	Use the correct volume of master mix or primer set.
	The DNA polymerase was not activated.	Repeat the amplification with an initial hold for 1 minute at 95°C.
	The master mix was not vortexed thoroughly before aliquoting.	Vortex the master mix thoroughly.
	The primer set was exposed to too much light.	Replace the primer set and store it protected from light.
	Evaporation.	Ensure that the plate is properly sealed with film.
	The thermal cycler malfunctioned.	See the thermal cycler user guide and check the instrument calibration.
	Incorrect thermal cycler conditions were used.	Use the correct thermal cycler conditions.
	The tubes or plate were not seated tightly in the thermal cycler during amplification.	Push the tubes or plate firmly into the block after the first cycle.
	The wrong PCR reaction tubes or plate were used.	Use MicroAmp [™] Reaction Tubes with Caps or a MicroAmp [™] Optical 96-Well Reaction Plate.
	Insufficient PCR product was electrokinetically injected.	Use the correct settings for the capillary electrophoresis instrument.
	Degraded formamide was used.	Ensure that the formamide is correctly stored. Do not thaw and refreeze the formamide multiple times. Try using Hi-Di [™] Formamide.
Positive signal from DNA Control 007 but partial or no signal from the test samples	The quantity of test DNA sample is below the assay sensitivity.	Quantify DNA and (when possible) add 1.0 ng of DNA. For low concentration samples, add up to 15 μ L of the DNA sample to the reaction mix, or consider using the 30-cycle protocol.
	The test sample contains a high concentration of PCR inhibitor (for example, heme	Quantify the DNA, then use the minimum required volume of test sample DNA.
	compounds, certain dyes).	Wash the sample in a Centricon [™] -100 centrifugal filter unit.

Observation	Possible cause	Recommended action
Positive signal from DNA Control 007 but partial or no signal from the test samples (continued)	The test sample DNA is severely degraded.	Use the Quantifiler [™] HP DNA Quantification Kit or the Quantifiler [™] Trio DNA Quantification Kit to evaluate sample quality during the quantification step. If DNA is degraded, re-amplify with an increased amount of DNA or use the AmpFℓSTR [™] MiniFiler [™] PCR Amplification Kit.
	The test sample was diluted in the wrong buffer (for example, a TE buffer with an incorrect EDTA concentration).	Redilute DNA using low-TE buffer (with 0.1 mM EDTA).
More than two alleles present at a locus	Secondary gene duplication at DYS385 a/b and/or DYF387S1 a/b.	Some samples may exhibit uneven peak height ratios at these markers due to the stochastic effects of the PCR or a secondary duplication event in one of the alleles. We recommend that allele calls be made based on peaks that are present (conservative approach) unless additional evidence is gathered to conclusively show that a secondary duplication event has taken place.
	Exogenous DNA is present in the sample.	Use appropriate techniques to avoid introducing foreign DNA during laboratory handling.
	Stutter product (-1 repeat unit position) was amplified.	Interpret the results according to your laboratory procedure. See "Extra peaks: Stutter" on page 66.
	The test sample contained mixed DNA.	Interpret the results according to your laboratory procedure. See Chapter 6, "Experiments and results".
	Incomplete 3' A base addition (n-1 bp position) occurred.	In the PCR, include the final extension step: 22 minutes at 60°C.
	The signal exceeds the dynamic range of the instrument and is causing signal "pull-up" into adjacent	Ensure that the cycle number is optimized. Use fewer PCR cycles or interpret the off-scale data according to your laboratory procedure.
	channels.	Ensure that you are using the recommended number of PCR cycles. Decrease the input DNA amount and repeat the PCR amplification, or interpret the off-scale data according to your laboratory procedure.
	Poor spectral separation occurred.	Perform a spectral calibration.
		installed and used for analysis.

В

Observation	Possible cause	Recommended action
More than two alleles present at a locus	Too much DNA was present in the reaction.	Use the recommended amount of template DNA: 1.0 ng.
(continued)	The double-stranded DNA was not completely denatured.	Use the recommended amount of Hi-Di [™] Formamide and heat the sample plate for 3 minutes at 95°C.
Some, but not all, loci are visible on test sample electropherograms	The punched disc that you used was too large.	Use a 1.2-mm disc.
	Insufficient lysis of the swab head occurred.	Ensure that the swab heads are incubated in 400 µL of Prep-n-Go™ Buffer for 20 minutes.
	The PCR reaction volume that you used is less than the volume required for the amplification.	Use the correct PCR reaction volume: 15 µL.
STR profiles contain many off-scale alleles	The PCR cycle number used was too high.	Perform a sensitivity experiment to determine the optimal PCR cycle number based on the sample type.
	Blood samples: Too much liquid blood was spotted onto the paper substrate.	Spot <100 μL of liquid blood per sample area.
Poor peak height balance	Incorrect thermal cycler conditions were used.	Use the correct thermal cycler conditions.

Materials required but not supplied

Sample preparation required materials	114
Thermal cycler required materials	116
Capillary electrophoresis instrument required materials	116
Analysis software required materials	118
Miscellaneous required materials	119

Unless otherwise indicated, all materials are available through **thermofisher.com**. "MLS" indicates that the material is available from **fisherscientific.com** or another major laboratory supplier.

Catalog numbers that appear as links open the web pages for those products.

Sample preparation required materials

Extracted DNA

Item	Amount	Cat. No.
GeneScan™ 600 LIZ™ Size Standard v2.0	2 × 200 µL	4408399
IMPORTANT! Do not use GeneScan [™] 350 ROX [™] , GeneScan [™] 500 ROX [™] , or GeneScan [™] 500 LIZ [™] Size Standards with this kit.		
TE Buffer [low-TE buffer; 10 mM Tris-HCI (pH 8.0) and 0.1 mM EDTA]	100 mL	12090015
		or see "(Optional) Prepare low- TE buffer" on page 21
Hi-Di [™] Formamide	25-mL	4311320

Treated paper substrate

Item	Source	
Collection system		
Whatman™ FTA™ Classic Cards	MLS	
Whatman™ EasiCollect™ system	MLS	

(continued)

Item	Source	
Sample preparation		
Prep-n-Go [™] Buffer (for use with untreated paper substrates)	4467079	
TE Buffer [low-TE buffer; 10 mM Tris-HCI (pH 8.0) and 0.1 mM EDTA]	12090015	
Punch tool		
Harris Micro-Punch™ tool, 1.2-mm	MLS	
BSD600-Duet Semi-Automated Dried Sample Punch Instrument with a 1.2-mm punch head	Contact your local calco office	
BSD1000-GenePunch Automated Dried Sample Punch Instrument with a 1.2-mm punch head	Contact your local sales office.	

Untreated paper substrate

Item	Source
Collection system	
903 paper	MLS
Punch tool	
Harris Micro-Punch™ tool, 1.2-mm	MLS
BSD600-Duet Semi-Automated Dried Sample Punch Instrument with a 1.2-mm punch head	
BSD1000-GenePunch Automated Dried Sample Punch Instrument with a 1.2-mm punch head	Contact your local sales office.

Swab substrate

Item	Source			
Collection system				
4N6FLOQSwabs™, regular tip	4473979			
Sample preparation				
Prep-n-Go [™] Buffer (for use with buccal swab substrates)	4471406			
Heated lysis protocol only: 1.5 mL tube format or 96-well deep-well plate format				
1.5 mL tube format				
1.5 mL tubes	MLS			

(continued)

Item	Source
Oven: VWR [™] Scientific dry heat block or equivalent	VWR [™] Scientific
96-well deep-well plate format	
PrepFiler™ 96-Well Processing Plates	A47010
Robbins Scientific [™] Model 400 Hybridization Incubator or equivalent	MLS
Agilent™ Benchtop Rack for 200 µL Tubes/V Bottom Plates (metal) or equivalent	
IMPORTANT! Do not use a plastic plate adaptor.	Agilent™ Technologies 410094

Thermal cycler required materials

ProFlex[™] PCR System

Item	Source
ProFlex™ 96-well PCR System	4484075
ProFlex™ 2 × 96-well PCR System	4484076
ProFlex™ 3 × 32-Well PCR System	4484073

VeritiPro[™] Thermal Cycler

Item	Source
HID VeritiPro™ Thermal Cycler, 96-well	A52127

Capillary electrophoresis instrument required materials

SeqStudio[™] Flex Series Genetic Analyzer for Human Identification

Item	Source
SeqStudio [™] 8 Flex Genetic Analyzer for Human Identification with SeqStudio [™] Flex Series Instrument Software v1.1.1	A56532
SeqStudio [™] 24 Flex Genetic Analyzer for Human Identification with SeqStudio [™] Flex Series Instrument Software v1.1.1	A56534
Anode Buffer Container 3500/Flex Series	4393927
Cathode Buffer Container 3500/Flex Series	4408256

(C0 D,

Item	Source
Septa Cathode Buffer Container 3500/Flex Series	4410715
Capillary array 36-cm SeqStudio™ 8 Flex	A49104
Capillary array 36-cm SeqStudio™ 24 Flex	A49105
96-Well Standard Retainer & Base Set SeqStudio™ Flex Series	A49316
8-Tube Standard Retainer & Base Set SeqStudio™ Flex Series	A49296
8-Strip Septa 3500/Flex Series	4410701
Septa for 96-Well Plates, for 3500/SeqStudio™ Flex	4412614
DS-36 Matrix Standard Kit (Dye Set J6)	4425042
POP-4 [™] (960) Performance Optimized Polymer	4393710
POP-4 [™] (384) Performance Optimized Polymer	4393715
Conditioning Reagent Kit 3500/Flex Series	4393718

SeqStudio[™] Genetic Analyzer for HID

Item	Source
SeqStudio [™] Genetic Analyzer for HID with SeqStudio [™] Data Collection Software v1.2.1, v1.2.4, or v1.2.5	A46227
(Optional) SAE Administrator Console v2.0 or v2.1	A46170 or A53717
<i>(Optional)</i> SeqStudio [™] Plate Manager v1.2 or v1.3	Thermo Fisher Scientific ^[1]
SeqStudio™ Genetic Analyzer Cartridge v2	A41331
SeqStudio™ Genetic Analyzer Cathode Buffer Container	A33401
Reservoir Septa (for Cathode Buffer Container)	A35640
SeqStudio [™] Integrated Capillary Protector	A31923
Septa for SeqStudio™ Genetic Analyzer, 96 well	A35641
Septa for SeqStudio™ Genetic Analyzer, 8 strip	A35643
DS-36 Matrix Standard Kit (Dye Set J6)	4425042

^[1] Available on apps.thermofisher.com or for download at thermofisher.com.

ontinued)	

3500 Series Genetic Analyzer for Human Identification

Item	Source
3500 Genetic Analyzer for Human Identification with 3500 Series Data Collection Software 4	4406017
3500xL Genetic Analyzer for Human Identification with 3500 Series Data Collection Software 4	4406016
(Software upgrade package) 3500 Series HID Data Collection Software v4.0.1	A46085
Anode Buffer Container 3500/Flex Series	4393927
Cathode Buffer Container 3500/Flex Series	4408256
Septa Cathode Buffer Container 3500/Flex Series	4410715
3500 Genetic Analyzer 8-Capillary Array, 36 cm	4404683
3500xL Genetic Analyzer 24-Capillary Array, 36 cm	4404687
Retainer & Base Set (Standard) for3500/3500xL Genetic Analyzer, 96 well	4410228
Retainer & Base Set (Standard) for3500/3500xL Genetic Analyzer, 8 tube	4410231
8-Strip Septa 3500/Flex Series	4410701
Septa for 96-Well Plates, for 3500/SeqStudio [™] Flex	4412614
DS-36 Matrix Standard Kit (Dye Set J6)	4425042
POP-4 [™] (960) Performance Optimized Polymer	4393710
POP-4 [™] (384) Performance Optimized Polymer	4393715
Conditioning Reagent Kit 3500/Flex Series	4393718

Analysis software required materials

GeneMapper[™] *ID-X* Software

Item	Source
GeneMapper™ <i>ID-X</i> Software v1.7.2 patch ^[1]	Thermo Fisher Scientific ^[2]
GeneMapper™ <i>ID-X</i> Software v1.7 Full Installation	A71700
GeneMapper [™] ID-X Software v1.7 Client Installation	A71701
GeneMapper™ ID-X Software v1.6 Full Installation	A39975
GeneMapper™ ID-X Software v1.6 Client Installation	A39976

(continued)

Item	Source
GeneMapper [™] ID-X Software v1.5 Full Installation	A27884
GeneMapper™ ID-X Software v1.5 Client Installation	A27886

^[1] The patch addresses known issues and provides new user functionality since the v1.7 release.

^[2] Available for free download at www.thermofisher.com/GMIDXsoftware.

Note: For a list of GeneMapper^m *ID-X* Software versions that are compatible with your kit and capillary electrophoresis instrument, see "Instruments and software compatibility" on page 16.

Miscellaneous required materials

Plates and tubes

Item	Source
MicroAmp [™] 96-Well Tray	N8010541
MicroAmp [™] Reaction Tube with Cap, 0.2 mL	N8010540
MicroAmp™ 8-Tube Strip, 0.2 mL	N8010580
MicroAmp [™] Optical 8-Tube Strip, 0.2 mL	4316567
MicroAmp [™] Optical 8-Cap Strips	4323032
MicroAmp [™] 96-Well Tray/Retainer Set	403081
(Adapter for 8-Tube Strip)	403001
MicroAmp [™] 96-Well Base	N8010531
MicroAmp [™] Clear Adhesive Film	4306311
MicroAmp [™] Optical Adhesive Film	4311971
MicroAmp [™] Optical 96-Well Reaction Plate	N8010560
MicroAmp [™] Optical 96-Well Reaction Plate with Barcode	4326659

Laboratory supplies

Item	Source
Various procedures	
Aerosol resistant pipette tips	MLS ^[1]
Microcentrifuge tubes	MLS
Pipettors	MLS
Tape, labeling	MLS
Tube, 50-mL Falcon™	MLS
Tube decapper, autoclavable	MLS
Deionized water, PCR grade	MLS
Vortex	MLS
(Optional) Tabletop centrifuge with 96-Well Plate Adapters	MLS
(Optional) Handheld Barcode Scanner	4488442

^[1] Major laboratory supplier

Plate layouts

Example PCR plate layout

The following layout is recommended for use with the sensitivity experiment in the Perform PCR chapter. Create 3 identical plates for amplification at 3 different cycle numbers.

	1	2	3	4	5	6	7	8	9	10	11	12
А	Samp 1	Samp 8	Samp 15	Samp 22								
в	Samp 2	Samp 9	Samp 16	Samp 23								
С	Samp 3	Samp 10	Samp 17	Samp 24								
D	Samp 4	Samp 11	Samp 18	Samp 25								
Е	Samp 5	Samp 12	Samp 19	Samp 26								
F	Samp 6	Samp 13	Samp 20	Neg ctrl								
G	Samp 7	Samp 14	Samp 21	007								
Н												

Example electrophoresis plate layout

The following layout is recommended for use with the sensitivity experiment in the Perform PCR chapter.

	1	2	3	4	5	6	7	8	9	10	11	12
A	Samp 1	Samp 8	Samp 15	Samp 22	Samp 1	Samp 8	Samp 15	Samp 22	Samp 1	Samp 8	Samp 15	Samp 22
в	Samp 2	Samp 9	Samp 16	Samp 23	Samp 2	Samp 9	Samp 16	Samp 23	Samp 2	Samp 9	Samp 16	Samp 23
С	Samp 3	Samp 10	Samp 17	Samp 24	Samp 3	Samp 10	Samp 17	Samp 24	Samp 3	Samp 10	Samp 17	Samp 24
D	Samp 4	Samp 11	Samp 18	Samp 25	Samp 4	Samp 11	Samp 18	Samp 25	Samp 4	Samp 11	Samp 18	Samp 25
E	Samp 5	Samp 12	Samp 19	Samp 26	Samp 5	Samp 12	Samp 19	Samp 26	Samp 5	Samp 12	Samp 19	Samp 26
F	Samp 6	Samp 13	Samp 20	Neg otri	Samp 6	Samp 13	Samp 20	N eg otri	Samp 6	Samp 13	Samp 20	Neg ctri
G	Samp 7	Samp 14	Samp 21	007	Samp 7	Samp 14	Samp 21	007	Samp 7	Samp 14	Samp 21	007
н	Allelio Ladder	C E Blank	Allelic Ladder	CE Blank	Allelic Ladder	C E Blank	Allelic Ladder	CE Blank	Allelic Ladder	CE Blank	Allelic Ladder	CE Blark
Cycle 1				Cycle 2			Cycle 3					

PCR work areas

	Work area setup and lab design	122
н.	PCR setup work area materials	122
	Amplified DNA work area	123

Work area setup and lab design

Many resources are available for the appropriate design of a PCR laboratory. If you are using this kit for:

- Forensic DNA testing, see "Forensic Laboratories: Handbook for Facility Planning, Design, Construction, and Moving", National Institute of Justice, 1998
- Parentage DNA testing, see the "Guidance for Standards for Parentage Relationship Testing Laboratories", American Association of Blood Banks, 7th edition, 2004

The sensitivity of this kit (and other PCR-based tests) enables amplification of minute quantities of DNA, necessitating precautions to avoid contamination of samples yet to be amplified (Kwok and Higuchi, 1989).

Process samples carefully to prevent contamination by human DNA. Wear gloves at all times and change them frequently. Close sample tubes when not in use. Limit aerosol dispersal by handling sample tubes and reagents carefully.

Note: We do not intend these references for laboratory design to constitute all precautions and care necessary for using PCR technology.

PCR setup work area materials

IMPORTANT! Do not remove these items from the PCR Setup Work Area.

- Calculator
- Gloves, disposable
- Marker pen, permanent
- Microcentrifuge
- Microcentrifuge tubes, 1.5-mL, or 2.0-mL, or other appropriate nuclease-free tube (for master mix preparation)
- Microcentrifuge tube rack
- Pipette tips, sterile, disposable hydrophobic filter-plugged
- Pipettes

- Tube decapper that can be autoclaved
- Vortex

Amplified DNA work area

IMPORTANT! Place the thermal cyclers in the Amplified DNA Work Area.

Use only the validated thermal cyclers listed in "Instruments and software compatibility" on page 16 .

WARNING! GENERAL SAFETY. Using this product in a manner not specified in the user documentation may result in personal injury or damage to the instrument or device. Ensure that anyone using this product has received instructions in general safety practices for laboratories and the safety information provided in this document.

- Before using an instrument or device, read and understand the safety information provided in the user documentation provided by the manufacturer of the instrument or device.
- Before handling chemicals, read and understand all applicable Safety Data Sheets (SDSs) and use appropriate personal protective equipment (gloves, gowns, eye protection, and so on). To obtain SDSs, visit thermofisher.com/support.

Chemical safety

WARNING! GENERAL CHEMICAL HANDLING. To minimize hazards, ensure laboratory personnel read and practice the general safety guidelines for chemical usage, storage, and waste provided below. Consult the relevant SDS for specific precautions and instructions:

- Read and understand the Safety Data Sheets (SDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. To obtain SDSs, see the "Documentation and Support" section in this document.
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing).
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with sufficient ventilation (for example, fume hood).
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer cleanup procedures as recommended in the SDS.
- Handle chemical wastes in a fume hood.
- Ensure use of primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- After emptying a waste container, seal it with the cap provided.
- Characterize (by analysis if needed) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure that the waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.
- **IMPORTANT!** Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

AVERTISSEMENT ! PRÉCAUTIONS GÉNÉRALES EN CAS DE MANIPULATION DE PRODUITS

CHIMIQUES. Pour minimiser les risques, veiller à ce que le personnel du laboratoire lise attentivement et mette en œuvre les consignes de sécurité générales relatives à l'utilisation et au stockage des produits chimiques et à la gestion des déchets qui en découlent, décrites ci-dessous. Consulter également la FDS appropriée pour connaître les précautions et instructions particulières à respecter :

- Lire et comprendre les fiches de données de sécurité (FDS) fournies par le fabricant avant de stocker, de manipuler ou d'utiliser les matériaux dangereux ou les produits chimiques. Pour obtenir les FDS, se reporter à la section « Documentation et support » du présent document.
- Limiter les contacts avec les produits chimiques. Porter des équipements de protection appropriés lors de la manipulation des produits chimiques (par exemple : lunettes de sûreté, gants ou vêtements de protection).
- Limiter l'inhalation des produits chimiques. Ne pas laisser les récipients de produits chimiques ouverts. Ils ne doivent être utilisés qu'avec une ventilation adéquate (par exemple, sorbonne).
- Vérifier régulièrement l'absence de fuite ou d'écoulement des produits chimiques. En cas de fuite ou d'écoulement d'un produit, respecter les directives de nettoyage du fabricant recommandées dans la FDS.
- Manipuler les déchets chimiques dans une sorbonne.

- Veiller à utiliser des récipients à déchets primaire et secondaire. (Le récipient primaire contient les déchets immédiats, le récipient secondaire contient les fuites et les écoulements du récipient primaire. Les deux récipients doivent être compatibles avec les matériaux mis au rebut et conformes aux exigences locales, nationales et communautaires en matière de confinement des récipients.)
- · Une fois le récipient à déchets vidé, il doit être refermé hermétiquement avec le couvercle fourni.
- Caractériser (par une analyse si nécessaire) les déchets générés par les applications, les réactifs et les substrats particuliers utilisés dans le laboratoire.
- Vérifier que les déchets sont convenablement stockés, transférés, transportés et éliminés en respectant toutes les réglementations locales, nationales et/ou communautaires en vigueur.
- **IMPORTANT !** Les matériaux représentant un danger biologique ou radioactif exigent parfois une manipulation spéciale, et des limitations peuvent s'appliquer à leur élimination.

Biological hazard safety

WARNING! Potential Biohazard. Depending on the samples used on this instrument, the surface may be considered a biohazard. Use appropriate decontamination methods when working with biohazards.

WARNING! BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Conduct all work in properly equipped facilities with the appropriate safety equipment (for example, physical containment devices). Safety equipment can also include items for personal protection, such as gloves, coats, gowns, shoe covers, boots, respirators, face shields, safety glasses, or goggles. Individuals should be trained according to applicable regulatory and company/ institution requirements before working with potentially biohazardous materials. Follow all applicable local, state/provincial, and/or national regulations. The following references provide general guidelines when handling biological samples in laboratory environment.

- U.S. Department of Health and Human Services, *Biosafety in Microbiological and Biomedical Laboratories (BMBL)*, 6th Edition, HHS Publication No. (CDC) 300859, Revised June 2020 cdc.gov/labs/bmbl
- Laboratory biosafety manual, fourth edition. Geneva: World Health Organization; 2020 (Laboratory biosafety manual, fourth edition and associated monographs)
 who.int/publications/i/item/9789240011311

Related documentation

Table 11 STR and quantification kits

Document title	Pub. No.	
STR kits		
Yfiler™ Plus PCR Amplification Kit— PCR Setup: Treated and Untreated Paper Substrates Quick Reference	MAN1001550	
Yfiler™ Plus PCR Amplification Kit— PCR Setup: Extracted DNA Quick Reference	MAN1001548	
Yfiler™ Plus PCR Amplification Kit—PCR Setup: Swab Substrate Quick Reference	MAN1001549	
Yfiler™ Plus PCR Amplification Kit— PCR Amplification and CE Quick Reference	MAN1001551	
Technical Note: Artifacts Identified Post-Developmental Validation: Yfiler™ Plus PCR Amplification Kit	Go to thermofisher.com , then search for the technical note by title, or contact your local Human Identification representative.	
Technical Note: Handling STR Kits and Ladder Decontamination		
Quantification kits		
Quantifiler™ HP and Quantifiler™ Trio DNA Quantification Kits User Guide	4485354	

Table 12 Thermal cyclers

Document title	Pub. No.			
ProFlex [™] PCR System				
ProFlex™ PCR System User Guide	MAN0007697			
ProFlex™ PCR System Kit Validation User Bulletin				
VeritiPro™ Thermal Cycler				
VeritiPro™ Thermal Cycler User Guide	MAN0019157			
HID VeritiPro™ Thermal Cycler, 96-well, User Bulletin—Applied Biosystems™ PCR Amplification Kit Validation	MAN0025561			

[1] Archived document. To access, go to https://assets.thermofisher.com/TFS-Assets/LSG/manuals/ 100031595_ProFlexKit_Validation_UB.pdf

Table 13 Capillary electrophoresis instruments

Document title	Pub. No.			
SeqStudio [™] Flex Series Genetic Analyzer for Human Identification				
SeqStudio™ Flex Series Genetic Analyzer with Instrument Software v1.1.1 User Guide	100104689			
SeqStudio™ Flex Series Genetic Analyzer for HID Validation User Bulletin	MAN0028463			
SeqStudio™ Flex Series Instrument Software v1.1.1 User Bulletin	MAN0029757			
SeqStudio [™] Genetic Analyzer for HID				
SeqStudio™ Genetic Analyzer Instrument and Software User Guide (v1.2 and later)	MAN0018646			
SeqStudio [™] Genetic Analyzer for HID User Bulletin—New Software Features and Verification/Validation Studies (v1.2 and later)	MAN1001221			
3500 Series Genetic Analyzer for Human Identification				
3500 Series Data Collection Software 4 User Bulletin: New Features and Developmental Validation	100075298			
3500/3500xL Genetic Analyzer with 3500 Series Data Collection Software v3.3 User Guide	100079380			

Table 14 Analysis software

Document title	Pub. No.
GeneMapper [™] ID-X Software all versions	
GeneMapper™ ID-X Software Bin Overlap User Bulletin	100029546
Technical Note: Compendium of GeneMapper™ ID-X Software version changes from version 1.0.1 through version 1.7.2	Thermo Fisher Scientific ^[1]
GeneMapper™ <i>ID-X</i> Software v1.7	
GeneMapper™ ID-X Software v1.7 Administration Guide	MAN0029245
GeneMapper™ ID-X Software v1.7 Installation Guide	MAN0029246
GeneMapper™ ID-X Software v1.7 New Features and Software Verification and Validation User Bulletin	MAN0029209
GeneMapper™ <i>ID-X</i> Software v1.6	
GeneMapper™ ID-X Software v1.6 New Features and Software Verification User Bulletin	100073905
GeneMapper™ <i>ID-X</i> Software v1.5	-
GeneMapper™ ID-X Software v1.5 New Features and Verification User Bulletin	100031708
GeneMapper™ ID-X Software v1.5 Getting Started Guide – Basic Features	100031701
GeneMapper™ ID-X Software v1.5 Quick Reference – Basic Features	100031702
GeneMapper™ ID-X Software v1.5 Getting Started Guide – Mixture Analysis Tool	100031704

Table 14 Analysis software (continued	Table 14	Analysis software	(continued)
---------------------------------------	----------	-------------------	-------------

Document title	Pub. No.
GeneMapper™ ID-X Software v1.5 Quick Reference – Mixture Analysis Tool	100031705
GeneMapper™ ID-X Software v1.5 Installation Guide	100031706
GeneMapper™ ID-X Software v1.5 Administrator Guide	100031703
GeneMapper™ ID-X Software v1.5 Reference Guide	100031707

^[1] Go to thermofisher.com, then search for the technical note by title, or contact your local Human Identification representative.

Customer and technical support

For support, use one of the contact methods listed below, depending on your location.

Location	Contact method
In North America	Send an email to: HIDTechSupport@thermofisher.com
	Call 888-821-4443; select option 2, say "Application Support", then say "HID" or "Human Identification".
Outside North America	Contact your local support office.

For the latest services and support information for all locations, go to **thermofisher.com/support** to obtain the following information.

- Worldwide contact telephone numbers
- Product support
- Order and web support
- Safety Data Sheets (SDSs; also known as MSDSs)

Additional product documentation, including user guides and Certificates of Analysis, are available by contacting Customer Support.

Limited product warranty

Life Technologies Corporation and its affiliates warrant their products as set forth in the Life Technologies' General Terms and Conditions of Sale at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have questions, contact Life Technologies at www.thermofisher.com/support.

Yfiler™ Plus PCR Amplification Kit User Guide

References

Ballantyne, K.N., Goedbloed, M. Fang, R., et al. 2010. Mutability of Y chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications. Am. J. Hum. Genet. 87:341–353.

Ballantyne, K.N., Keerl, V., Wollstein, A., Choi, Y., Zuniga, S.B., Ralf, A., Vermeulen, M., de Knijff, P., Kayser, M. 2012. A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci. Int. Genet. 6(2):208–18.

Ballantyne, K.N., Ralf, A., Aboukhalid, R., et al. 2014. Towards male individualization with rapidly mutating Y-chromosomal STRs. Hum. Mutat. doi: 10.1002/humu.22599. PubMed PMID: 24917567.

Begovich A.B., McClure G.R., Suraj V.C., Helmuth R.C., Fildes N., Bugawan T.L., Erlich H.A., Klitz W. 1992. Polymorphism, recombination, and linkage disequilibrium within the HLA class II region. *J. Immunol.* 148:249–258.

Butler, J.M. 2005. Forensic DNA Typing. Burlington, MA:Elsevier Academic Press.

Clark J.M. 1988. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. *Nucleic Acids Res.* 16:9677–9686.

Edwards, A., Hammond, H.A., Lin, J., Caskey, C.T., and Chakraborty, R. 1992. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. *Genomics* 12:241–253.

Frank, W., Llewellyn, B., Fish, P., et al. 2001. Validation of the AmpFISTR Profiler Plus PCR Amplification Kit for use in forensic casework. *J. Forensic Sci.* 46:642–646.

Furedi, S., Woller, J., Padar, Z., Angyal, M. 1999. Y-STR haplotyping in two Hungarian populations. Int. J. Legal Med. 113:38-42.

Grossman, P.D., Bloch, W., Brinson, E., Chang, C.C., Eggerding, F.A., Fung, S., Iovannisci, D.M., Woo, S., Winn-Deen, E.S. 1994. High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation. Nucleic Acids Res. 22:4527–4534.

Gusmao, L., Butler, J.M., Carracedo, A., Gill, P., Kayser, M., Mayr, W.R. et al., 2006. DNA Commission of the International Society of Forensic Genetics (ISFG): An update of the recommendations on the use of Y-STRs in forensic analysis. Forensic Sci. Int. 157:187–97.

Holt, C., Stauffer, C., Wallin, J., et al. 2000. Practical applications of genotypic Surveys for forensic STR testing. *Forensic Sci. Int.* 112:91–109.

Johnson, C.L., Warren, J.H., Giles, R.C., Staub, R.W. 2003. Validation and uses of a Ychromosome STR 10-plex for forensic and paternity laboratories. J. Forensic Sci. 2003. 48(6):1260–8.

Kwok, S., and Higuchi, R. 1989. Avoiding false positives with PCR. Nature 339:237-238.

Lazaruk, K., Walsh, P.S., Oaks, F., Gilbert, D., Rosenblum, B.B., Menchen, S., Scheibler, D., Wenz, H.M., Holt, C., Wallin, J. 1998. Genotyping of forensic short tandem repeat (STR) systems based on sizing precision in a capillary electrophoresis instrument. *Electrophoresis* 19:86–93.

Li, H. Schmidt, L., Wei, M-H., Hustad, T. Leman, M.I., Zbar, B. and Tory, K. 1993. Three tetranucleotide polymorphisms for loci:D3S1352; D3S1358; D3S1359. *Hum. Mol. Genet.* 2:1327.

Magnuson, V.L., Ally, D.S., Nylund, S.J., Karanjawala, Z.E., Rayman, J.B., Knapp, J.I., Lowe, A.L., Ghosh, S., Collins, F.S. 1996. Substrate nucleotide-determined nontemplated addition of adenine by Taq DNA polymerase: implications for PCR-based genotyping and cloning. *Biotechniques* 21:700–709.

Mansfield, E.S., Robertson, J.M., Vainer, M., Isenberg, A.R., Frazier, R.R., Ferguson, K., Chow, S., Harris, D.W., Barker, D.L., Gill, P.D., Budowle, B., McCord, B.R. 1998. Analysis of multiplexed short tandem repeat (STR) systems using capillary array electrophoresis. *Electrophoresis* 19:101–107.

Mills, K.A., Even, D., and Murrau, J.C. 1992. Tetranucleotide repeat polymorphism at the human alpha fibrinogen locus (FGA). Hum. Mol. Genet. 1:779. Möller, A. and Brinkmann, B. 1994. Locus ACTBP2 (SE33): Sequencing data reveal considerable polymorphism. *Int. J. Leg. Med.* 106:262–267.

Moretti, T., Baumstark, A., Defenbaugh, D., Keys, K., Smerick, J., and Budowle, B. 2001. Validation of short tandem repeats (STRs) for forensic usage: Performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples. *J. Forensic Sci.* 46(3):647–660.

Mulero, J., Ballantyne, J., Ballantyne, K., Budowle, B., Coble, M., Gusmão, L., Roewer, L., Kayser, M. Nomenclature update and allele repeat structure for the markers DYS518 and DYS449. 2014. Forensic Sci. Int. Genet. doi: 10.1016/j.fsigen.2014.04.009. PubMed PMID: 24854343.

Mulero, J.J., Chang, C.W., and Hennessy, L.K. 2006. Characterization of N+3 stutter product in the trinucleotide repeat locus DYS392. *J. Forensic Sci.* 51:826–830.

Nakahori, Y., Takenaka, O., and Nakagome, Y. 1991. A human X-Y homologous region encodes amelogenin. *Genomics* 9:264–269.

Redd, A.J., Agellon, A.B., Kearney, V.A., Contreras, V.A., Karafet, T., Park, H., de Knijff, P., Butler, J.M., Hammer, M.F. 2002. Forensic value of 14 novel STRs on the human Y chromosome. Forensic Sci. Int. 130:97–111.

Schoske, R., Vallone, P.M., Kline, M.C., Redman, J.W., Butler, J.M. 2004. Highthroughput Y-STR typing of U.S. populations with 27 regions of the Y chromosome using two multiplex PCR assays. Forensic Sci. Int. 139:107–21.

Scientific Working Group on DNA Analysis Methods (SWGDAM). 2012. Validation Guidelines for DNA Analysis Methods. Available at media.wix.com/ugd/ 4344b0_cbc27d16dcb64fd88cb36ab2a2a25e4c.pdf

Scientific Working Group on DNA Analysis Methods (SWGDAM). 2014. Interpretation Guidelines for Y-Chromosome STR Typing by Forensic DNA Laboratories. Available at media.wix.com/ugd/ 4344b0_da25419ba2dd4363bc4e5e8fe7025882.pdf

Sharma, V. and Litt, M. 1992. Tetranucleotide repeat polymorphism at the D21S11 locus. *Hum Mol. Genet.* 1:67.

Smith, R.N. 1995. Accurate size comparison of short tandem repeat alleles amplified by PCR. *Biotechniques* 18:122–128.

Sparkes, R., Kimpton, C., Watson, S., Oldroyd, N., Clayton, T., Barnett, L., Arnold, J., Thompson, C., Hale, R., Chapman, J., Urquhart, A., and Gill, P. 1996a. The validation of a 7-locus multiplex STR test for use in forensic casework. (I). Mixtures, ageing, degradation and species studies. Int. J. Legal Med. 109:186–194.

Sparkes, R., Kimpton, C., Gilbard, S., Carne, P., Andersen, J., Oldroyd, N., Thomas, D., Urquhart, A., and Gill, P. 1996b. The validation of a 7-locus multiplex STR test for use in forensic casework. (II), Artifacts, casework studies and success rates. *Int. J. Legal Med.* 109:195–204.

Straub, R.E., Speer, M.C., Luo, Y., Rojas, K., Overhauser, J., Ott, J., and Gilliam, T.C. 1993. A microsatellite genetic linkage map of human chromosome 18. *Genomics* 15:48–56.

Wallin, J.M., Buoncristiani, M.R., Lazaruk, K.D., Fildes, N., Holt, C.L., Walsh, P.S. 1998. SWGDAM validation of the AmpFISTR blue PCR amplification kit for forensic casework analysis. *J. Forensic Sci.* 43:854–870.

Wallin, J.M., Holt, C.L., Lazaruk, K.D., Nguyen, T.H., Walsh, P.S. 2002. Constructing universal multiplex PCR systems for comparative genotyping. *J. Forensic Sci.* 47:52–65.

Walsh, P.S., Fildes, N.J., Reynolds, R. 1996. Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. *Nucleic Acids Res.* 24:2807–2812.

