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Overview

Determining HLA genotypes is an important part of many studies to understand the 
genetic basis of immune response, disease associations, and transplant tolerance or 
rejection. The ability to determine HLA types from new or pre-existing genotyping 
data in parallel with other genetic analyses is a combination that will enable new 
scientific insights with greater efficiency. 
Axiom HLA Analysis software uses a multi-population reference panel and the HLA 
type imputation model HLA*IMP:021 to statistically infer the HLA types of human 
samples from genotype data generated from Affymetrix genotyping arrays.
Through our on-going work with collaborators, Affymetrix continues to improve the 
multi-population reference panel to benefit the global community.
1 = For more information on the HLA*IMP:02 algorithm, see Appendix: Multi-Population 
Classical HLA Imputation.

System requirements

Installation

1. Download the Axiom HLA Analysis 1.2 zip package from the Affymetrix 
website.

2. Save the zipped package to a local (easily accessible) folder on your system.
3. Unzip the file as you normally would.
4. Locate the Axiom HLA Analysis.exe file, then double-click on it.
5. Follow the installer’s on-screen instructions.

Starting Axiom HLA Analysis

1. Click Start → All Programs → Thermo Fisher Scientific → Axiom HLA Analysis 
or double-click on the Desktop  icon.

Operating System Speed Memory (RAM) Available Disk Space

Microsoft Windows® 10 (64 bit) 
Professional

2.83 GHz Intel Pentium 
Quad Core Processor

16 GB RAM 150 GB

Microsoft Windows® 7 (64 bit) 
Professional with Service Pack 1

2.83 GHz Intel Pentium 
Quad Core Processor

16 GB RAM 150 GB
Axiom HLA Analysis User Guide 4
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The main Axiom HLA Analysis window appears. (Figure 1)

Selecting an input file

1. Click the Input File’s Browse  button.
An Explorer window appears.

2. Navigate to your VCF file location, then click Open.
Your selected file and its path now appears, as shown in Figure 2.

Note: It is highly recommended your VCF file contains 20 or more samples.

Figure 1   Axiom HLA Analysis main window

IMPORTANT!  Your input file must be a valid tab-delimited VCF (Variant Call Format) file. To 
create a VCF file, see "Ways to generate a VCF file" on page 16.

Figure 2   Input file path
Axiom HLA Analysis User Guide 5
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Assigning an output file location

1. Click the Output Folder path’s Browse  button.
A Please select folder window appears.

2. Navigate (as you normally would) to an easily accessible local output folder 
location, then click the window’s  button.
A new folder is created.

3. Enter a folder name (Example: HLA_Output), then click .
Your output folder and its path now appears, as shown in Figure 3.

Assigning a batch name

1. Click inside the Enter Batch Name field (Figure 4), then enter a batch name.
A warning message appears if you enter a batch name that contains a special 
character that is not supported. (Example: “.”) Acknowledge the message, then 
enter a different batch name.

After the analysis is complete, a sub-folder (inside your assigned output folder) is 
auto-generated and labeled using this batch name, as shown in Figure 5.

Figure 3   Output folder path

Figure 4   Enter Batch Name field

Figure 5   Example of an Output folder’s Batch name/sub-folder
Axiom HLA Analysis User Guide 6
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Selecting a graph file version

A select set of known genotypes and HLA types from a reference data set have been 
used to construct a haplotype graph of the extended MHC region of the genome for 
imputing the HLA type of an individual sample. These graphs are updated as more 
samples are included in the reference data set, therefore multiple versions of the graph 
file may be available on a given system.
For best results, it is recommended you use the latest available version of the graph file. 
Graph File version updates are available for download from thermofisher.com or 
email your local field support representative to request a version update. 
Reference files should be updated at the beginning of a study. For consistency 
purposes, all samples in your study should be analyzed using the same Graph File 
version.

1. Click the Graph File Version drop-down menu to select the version you want. 
(Figure 6)

Selecting Loci

By default, the Select All check box is selected and all Loci selections are auto-checked, 
as shown in Figure 7.

To choose specific Loci from the selection list, click to uncheck the Select All check box, 
then click to check the specific Loci you want.

Figure 6   Graph File Version drop-
down

Figure 7   Loci 
Selection
Axiom HLA Analysis User Guide 7
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Running an analysis

1. Click .
The analysis process and report generation begins.
Note: If duplicate IDs are detected within your Input (VCF) file, a warning 
message appears. Click Yes to remove the duplicate IDs. If you click No, the 
analysis cannot continue.

The Log Messages pane and progress bar display analysis status, as shown in Figure 8.

Note: Processing times vary depending on the size of your VCF file and number of 
selected/checked Loci.

Viewing full reports

Immediately after a report has been successfully generated, the Results Viewer 
window appears and displays a 4 Digit Samples report, as shown in Figure 9.
Each sample displays two allele calls (Allele1 and Allele2) that represent the calls on 
the two copies of chromosome 6. The assignment of a call to one copy of the 
chromosome (or the other) is random and has no biological significance. The calls may 
switch from Allele1 to Allele2 between the 2 Digit and 4 Digit reports and/or between 
analysis runs on different workstations. This behavior is not significant.
Each call is assigned a probability score. Each score (Allele1_Probability and Allele2 
_Probability) is the individual probability that the corresponding call is correct. The 
algorithm calls Allele1 first, then based on that call, makes the call for Allele2. The 
Combined_Probability is the overall probability that both calls have been assigned 
correctly.

IMPORTANT!  If your input and/or output location resides on a network drive, make sure the 
connection is reliable, as an intermittent or halted connection may cause the Viewer to 
inadvertently display results from a previous analysis.

Figure 8   Log Messages pane and progress bar
Axiom HLA Analysis User Guide 8
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Note: In some instances, a particular loci may not be represented within the sample. If 
this is the case, the call is reported as 9901 (Figure 9) and its HLA type is not defined.

Using table data in 
Excel or Notepad

1. Single-click on a row or press Ctrl click, or Shift click to select multiple rows.
2. Press Ctrl c to copy your selected (highlighted) row(s).
3. Open MS Excel or MS Notepad, then press Ctrl v to paste your copied row(s).

Viewing a 2-Digit 
Samples report 

1. Click the 2 Digit Samples tab. (Figure 10)

Figure 9   Report Options window

Figure 10   Report Options window
Axiom HLA Analysis User Guide 9
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Grouping your full 
report samples

Click the Group by drop-down menu (Figure 11) to group your completed analysis 
data by either Sample_ID or Locus.

Figure 11   Group by drop-down

Figure 12   Group by Sample ID example

Figure 13   Group by Locus example
Axiom HLA Analysis User Guide 10



1

Note: The probability scores may vary slightly between different workstations. This is 
normal, as the imputation model uses a random seed in the inference step which may 
result in insignificant differences in the probability.

Changing the 
default combined 
probability 
threshold

1. Click inside the Combined_Probability Threshold text field to enter a different 
value.
Your newly entered value is instantly reflected within the table. Calls that do not 
pass your entered threshold value are not displayed.

Showing only 
passing samples

By default, only the samples that have passed your filter criteria are displayed. 
Uncheck the Show Only Passing Samples check box to show all samples. 

Exporting/saving a 
full report

1. Click .
An Explorer window appears.

2. Navigate to an easily accessible save location, enter a filename, then click Save.
An Information window appears confirming your full report has been saved 
successfully.

3. Click OK to acknowledge the message.
4. Use Windows Explorer to navigate to the location of your newly exported/saved 

report.
5. Use Excel, MS Word, WordPad, or Notepad to open the tab-delimited.txt 

formatted report file.
Save or print the report as you normally would or click File → Save As to save it 
with a different file extension (for use in other applications).
Axiom HLA Analysis User Guide 11
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Viewing per sample reports

1. Click the Per Sample Reports tab. (Figure 14)

2. Optional: Click the One file per sample check box to generate individual per 
sample reports. Leave this check box unchecked to generate a single (combined) 
per sample report.

Note: The When the One file per sample check box is checked, only the first 
sample is displayed in the Results Viewer, as shown in Figure 16 on page 13.

3. Optional: Click inside the Combined_Probability Threshold text field to enter a 
different value.

4. In the Samples window pane (Figure 14), click each check box next to the listed 
Sample you want to include in a per sample report or click the Select all check 
box to include all samples in the per sample report.
Your Per Sample Report(s) appear within the viewer, as shown in Figure 15.

Figure 14   Per Sample Reports window tab
Axiom HLA Analysis User Guide 12
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Figure 15   Per Sample Report Viewer example

Figure 16   One file per sample Report Viewer example
Axiom HLA Analysis User Guide 13
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Exporting and viewing per sample reports

1. Click .
A Select Folder window appears.

2. Click to highlight a folder or click the window’s  button to create a new 
folder.

3. Click Select Folder.
A window appears displaying your RTF formatted report files.

4. Double-click on the RTF report file you want to view.
The report opens.

5. Optional: Click File → Save As to save the report with a different file extension 
(for use in other applications).

Default Per Sample 
Report Filenames

Each per sample report is auto-assigned a Sample ID-based filename, as shown in 
Figure 17.

A single (multiple per sample) report is auto-assigned the filename SampleDetails 
and a time-stamp, as shown in Figure 18.

Viewing completed 
results

All completed results reside in the Open Existing Result(s) window tab.
1. Click the Open Existing Result(s) tab.

The Open Existing Result(s) window tab appears. (Figure 19)

Figure 17   Report filename examples

Per sample report filename examples

Figure 18   Single Per Sample Report filename example

06=MM(Month) 29=DD(Day) 2015 =YYYY(Year) 10=HH(Hours) 57=MM(Minutes) 12=SS(Seconds)

 Single (combined) per sample report filename example.
Axiom HLA Analysis User Guide 14
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Viewing a result 1. Single-click on a result you want to view to highlight it, then click .
Your selected result appears in the Results Viewer window. 
To use the viewer, see ʺViewing full reportsʺ on page 8 or ʺViewing per sample 
reportsʺ on page 12.

Viewing an existing 
result

Do the following to view an existing result not displayed on the Open Existing 
Result(s) window tab:

1. Click .
A Please select folder window appears.

2. Use Windows Explorer to navigate to the folder containing the existing result you 
want to view

3. Single-click to highlight its folder, then click .
The result is now listed on the Open Existing Result(s) window tab.

4. Single-click to highlight the result set you want to view, then click .
Your result appears in the Results Viewer window. 
To use the viewer, see ʺViewing full reportsʺ on page 8 or ʺViewing per sample 
reportsʺ on page 12.

Figure 19   Open Existing Result window tab
Axiom HLA Analysis User Guide 15
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Removing a listed 
result set

1. Click to highlight the result set you want to remove, then click . (Figure 20)
The result set is now removed from the Open Existing Result(s) window tab list, 
but is not deleted from the folder it resides in.

Ways to generate a VCF file

Using Axiom 
Analysis Suite

At the SNP Summary Table window tab, click Export → Export Genotyping Data, 
then refer to the Axiom Analysis Suite User Guide (P/N 703307) for instructions on 
how to generate a VCF file.

Using a command 
line

The command line application apt-format-result.exe included in Affymetrix Power 
Tools (APT) 1.17 can be used to generate a VCF file.
Make sure your command line is formatted, as follows:
apt_format-results.exe --calls-file <full path to your calls> -annotation file <full path to 
annot.db file>
Example command line: (Figure 21)

Note: The calls.txt is produced by Genotyping Console, Axiom Analysis Suite, and 
Affymetrix Power Tools (apt-probeset-genotype.exe and apt-genotype-axiom.exe). 
Refer to the User Manuals of these applications for the specific location of the calls.txt 
file.

Supplemental information

The following pages are from external sources and have been added to this User Guide 
for your reference.

Figure 20   Removing a result set

Figure 21   Per Sample example
Axiom HLA Analysis User Guide 16
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Introduction

Statistical imputation of classical human leukocyte antigen

(HLA) alleles from SNP genotypes in case-control studies has

become established as a valuable tool for identifying and fine-

mapping signals of disease association in the MHC. Application of

the HLA type imputation framework HLA*IMP [1,2] has, for

example, helped to fine-map secondary HLA-based risk effects in

multiple sclerosis [3], contributed to characterizing an HLA-

related gene-gene interaction in psoriasis [4], and was essential in

refuting a suspected strong HLA contribution to childhood B-cell

precursor acute lymphoblastic leukaemia [5]. Classical HLA allele

imputation has, in other settings, been used to identify particular

amino acids within classical peptides contributing to disease risk

[6].

Classical HLA allele imputation is complicated by hyperpoly-

morphism (HLA-B , for example, has dozens of common alleles

and w2000 rare alleles) and the complex haplotype structure of

the HLA region, justifying the development of specialized

imputation machinery. Linkage disequilibrium (LD) between loci

usually declines with distance, as LD is broken down by

recombination. In the HLA, however, this is not always

empirically true. Many comparatively distant SNPs carry infor-

mation on the allelic state of the classical HLA genes [7]. Fully

capturing this information is not trivial. For example, a commonly

used model in statistical genetics, the Li and Stephens approxi-

mation [8], does not allow for explicit modelling of long-distance

LD relationships due to its reliance on a first order Markov chain.

HLA*IMP therefore uses a particular formulation of the Li and

Stephens approximation that assigns equal weight to all selected

SNPs irrespective of distance from the classical locus of interest

[2]. We have since demonstrated (e.g., [1]) that this formulation

leads to highly accurate HLA type imputations, at least when

reference and imputation panel are derived from the same

population.

For the increasingly important use case of multi-population

studies (where the reference and analysis panels consist of samples

taken from multiple, possibly diverse, populations), HLA type

imputation has, however, remained challenging: Imputation

accuracy is limited by the extent to which the reference panel

captures the diversity of the target population and current methods

typically rely on single-source reference panels of Northern

European origin [1,9].

The obvious solution, successfully applied in SNP genotype

imputation [10,11,12], is to make use of diverse multi-population

reference panels. However, an additional challenge of multi-

population classical HLA type imputation is that single HLA

alleles can appear on multiple SNP haplotype backgrounds [7], a

phenomenon we refer to as ‘‘haplotypic heterogeneity’’. More-

over, genetic data obtained from multiple data sets from different

PLOS Computational Biology | www.ploscompbiol.org 1 February 2013 | Volume 9 | Issue 2 | e1002877



populations is likely to contain systematic genotyping artefacts.

Here we present HLA*IMP:02, an HLA type imputation method

that is particularly aimed at inference in multi-population and

multi-ethnicity settings. That is, it is designed to accommodate

both haplotypic heterogeneity and genotyping error.

Inference under HLA*IMP:02 is based on a graphical model of

the haplotype structure of the MHC region. We motivate this

choice by restating an observation made by Browning and

Browning [13]: Graphical haplotype models are well-suited to

model LD relationships spanning different scales of distance

(‘‘variable-length Markov chains’’), which fits with the HLA

region’s empirically observed LD structure. We present an

algorithm to build such models from a set of reference genotype

data. The main design features of the algorithm are that it takes

into account haplotype uncertainty introduced by potential

genotyping error, that it allows for haplotypic heterogeneity and

that it tailors the graphs to make them maximally informative

about the allelic state of the HLA loci. Our algorithm can be

viewed as a probabilistic generalization of the works of Browning

and Browning [14]. Compared with HLA*IMP, HLA*IMP:02

also offers a couple of practical advantages: it is highly tolerant of

missing data in the inference panel and supports imputation of

HLA-DPB1 and HLA-DRB3-5.

It is instructive to explicitly consider how the design of

HLA*IMP:02 leads to an improved ability to deal with hetero-

geneous data, as compared to HLA*IMP:

N Data representation: HLA*IMP:02 builds a combined locus-

specific haplotype graph model of the whole dataset. In

HLA*IMP, in contrast, reference genotype data is phased and

separated by HLA alleles. All further steps are based on these

allelic groups (one for each HLA allele in the reference panel).

This design prevents HLA*IMP from sharing SNP haplotype

information across haplotypes carrying different HLA alleles.

N Maximising imputation performance: HLA*IMP:02, uses all

available SNPs in the HLA region. However, while building

the haplotype graph no two internal haplotype states that

exhibit different association patterns to HLA alleles are

combined, thus maintaining accuracy specifically for HLA

allele prediction. HLA*IMP, in contrast, carries out a process

of SNP selection, identifying SNPs in the region that are

informative for accurate prediction of HLA types. Finding a set

of consistently informative SNPs becomes increasingly difficult

as the degree of stratification in the reference panel increases.

N Inference model: In the haplotype-graph approach of

HLA*IMP:02, haplotypes are not grouped in advance. If an

allele appears on multiple SNP haplotypes, there will be

multiple paths through the graph leading to the allele.

Inference is based on comparing the likelihoods of all possible

paths. Ambiguity therefore typically only arises if two or more

alleles share the same SNP haplotypes, but not if one allele

appears on more than one background. Additional heteroge-

neity in the reference panel (characterized by alleles appearing

on more than one unique background) does not decrease the

model’s ability to correctly infer HLA genotypes. HLA*IMP,

in contrast, appears to suffer decreased performance in both

scenarios (one allele/multiple backgrounds, multiple alleles/

one background). This is perhaps because inference under

HLA*IMP is based on finding the most similar group of

haplotypes (implemented through a particular formulation of

the Li and Stephens [8] Hidden Markov Model, HMM).

Additional heterogeneity in an allele’s SNP background

necessarily reduces group-wise average similarity and dilutes

the model’s ability to correctly infer HLA genotypes.

We carry out three experiments to investigate the performance

of HLA*IMP:02 on reference panels of varying heterogeneity. In

the first experiment, we apply HLA*IMP:02 to a homogeneous

(predominately British) reference panel and show that it performs

as well as HLA*IMP in this baseline scenario. In the second

experiment, we demonstrate that HLA*IMP:02 achieves high

imputation accuracy at 4-digit HLA type resolution (reflecting

primary sequence of the HLA proteins) when applied to an

integrated cross-European reference panel, clearly outperforming

HLA*IMP. In the third experiment, we use a highly heteroge-

neous multi-ethnic reference panel to impute HLA genotypes of

Asian, African-American, African, European and Hispanic indi-

viduals. We show that accuracy for the European individuals

remains essentially unchanged by making the reference panel

more heterogeneous and that the model achieves high imputation

accuracy for the other ethnicities at 2-digit resolution, which

reflects the serological properties of the HLA alleles (see

Subsection ‘‘Validation’’ for a precise definition in our context).

Materials and Methods

HLA*IMP:02
We use an acyclic probabilistic finite automaton (‘‘haplotype

graph’’, see Figure 1) to represent haplotype structure in the HLA

region [14,15]. The haplotype graph describes the haplotype

structure of SNPs around the classical HLA loci. In Figure 1, each

possible path through the graph also passes through an edge

carrying an HLA allele, and therefore specifies a corresponding

HLA genotype. The likelihood of any particular path depends on

the branching structure of the graph (as specified by the

probabilities on the edges in Figure 1) as well as on the observed

SNP genotypes from an individual that we want to make inference

for. For example, if we observe the SNP genotypes TTA?TA (the

question mark stands for the unknown HLA allele, and we only

consider the haploid case here for simplicity), the likelihood of the

path passing through the bottom nodes (and the 1501 allele) is 0.2,

Author Summary

The human leukocyte antigen (HLA) proteins influence
how pathogens and components of body cells are
presented to immune cells. It has long been known that
they are highly variable and that this variation is associated
with differential risk for autoimmune and infectious
diseases. Variant frequencies differ substantially between
and even within continents. Determining HLA genotypes is
thus an important part of many studies to understand the
genetic basis of disease risk. However, conventional
methods for HLA typing (e.g. targeted sequencing,
hybridisation, amplification) are typically laborious and
expensive. We have developed a method for inferring an
individual’s HLA genotype based on evaluating genetic
information from nearby variable sites that are more easily
assayed, which aims to integrate heterogeneous data. We
introduce two key innovations: we allow for single HLA
types to appear on heterogeneous backgrounds of genetic
information and we take into account the possibility of
genotyping error, which is common within the HLA region.
We show that the method is well-suited to deal with multi-
population datasets: it enables integrated HLA type
inference for individuals of differing ancestry and ethnicity.
It will therefore prove useful particularly in international
collaborations to better understand disease risks, where
samples are drawn from multiple countries.
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and the likelihood of all others paths is 0 (not allowing for any

deviations from the edge labels for the sake of this argument). For

ATA?GA, the case is also clear: 0301 is the only possible allele. If we

now change the second-last genotype to T (yielding ATA?TA), there

are two possible paths. The one passing through 1501 has a

likelihood of 0.012, and the other one passing through 0301 has a

likelihood of 0.056. Conditional on the observed SNP genotypes,

1501 is therefore approximately twice as probable as 0301.

Changing the second and third genotypes would not influence this

result (which relates back to our introductory comments on the

variable length of captured LD relationships: the first position

influences inference, the second and third do not).

In order to use haplotype graphs for imputation, there are two

general problems to address: how to construct a haplotype graph

from a set of reference data, and how to use an existing graph for

imputing the genotype of an additional individual. Methods to

construct and use haplotype graph-like objects from a set of

reference data were discussed by Ron et al. [15] and introduced

into the field of statistical genetics by Browning [13] and Browning

and Browning [14]. The work we present here can be viewed as a

probabilistic generalization of the works of Ron et al. [15] and

Browning and Browning [14]. To use haplotype graph models

specifically for HLA type inference, we have developed solutions to

two related tasks: how to build a haplotype graph model from the

reference panel allowing for errors in SNP genotype data and

haplotypic heterogeneity and how to boost accuracy for HLA

allele imputations. A full and formal description of the

HLA*IMP:02 algorithm can be found in the Supporting Text

S1. Here we provide outline of our algorithm and the inference

process, highlighting where we generalized and extended previous

approaches.

Constructing a haplotype graph from a set of reference data

(including both SNP and HLA genotypes) is an iterative process,

consisting, as in BEAGLE, of three main steps:

N Initialization: for each individual, populate the set H of current

haplotype estimates by sampling from the uniform distribution

over all genotype-consistent haplotype pairs. In contrast to

BEAGLE, we preserve missing data in the generated

haplotype pairs.

N Probabilistic graph construction: build a haplotype graph

object from the set H of current haplotype estimates. Each

element in H corresponds to one path through the graph

which is going to be constructed. We define a probability

distribution over possible paths for each element in H and

probabilistically attach the elements in H to nodes in the

graph. This enables us to allow for genotyping errors and

missing data in H and puts some part of the probability mass

of similar haplotypes on the same nodes, even if they differ in

single positions (by setting the probability of genotyping error

to 0, one obtains the deterministic BEAGLE/Ron et al. [15]

mode of haplotype propagation through the graph). In the

process of building the graph, we collapse similar nodes for

reasons of parsimony and computational efficiency. In defining

node similarity, we introduce criteria that relate to each node’s

pattern of association with the HLA loci along the graph, and

prevent collapsing two nodes that exhibit differing patterns of

LD with HLA alleles (by setting the set of the loci that these

additional criteria apply to the empty set, one obtains the

conventional similarity criterion from BEAGLE/Ron et al.

[15]).

N Resampling: Construct the diploid HMM induced by the

constructed haplotype graph and re-populate H. If a

predefined number of iterations has not been exceeded, fit

this HMM to the reference genotype data, re-populate H with

haplotype samples from the HMM (imputing missing data)

and go to step 2. Like Browning and Browning [16], we use an

HMM that allows for genotyping error.

The HMM resulting from the final iteration is used to generate

HLA type estimates for all following imputation operations

(BEAGLE, in contrast, builds joint haplotype graphs of imputation

and reference panels, and carries out imputation as part of this

procedure, which requires special measures for assuring conver-

gence if the joint set is dominated by samples from the imputation

dataset).

Availability, Performance, Usability
Source code for HLA*IMP:02 is available from http://

oxfordhla.well.ox.ac.uk (free for academic use). Compiling and

Figure 1. Features of haplotype graph models. Illustration of the features of haplotype graph models. Haplotype graphs are a subclass of
connected directed graphs and belong to the class of acyclic probabilistic finite automata. Their most important properties are illustrated here: 1)
They are leveled, i.e. each vertex v has an associated positive number 1, and all edges emanating from v at level l lead to a vertex at level lz1 and
represent the same genetic locus. Vertices at level T are final vertices with no outgoing edges, and there is a path from every vertex in the graph to
one of the final vertices. 2) Edges carry ‘‘emission symbols’’ which are emitted when an edge is traversed (in the figure: the symbols after the ‘‘|’’
character adjacent to the edges), and there are no two edges emanating from the same vertex which carry the same symbol. 3) Each vertex has an
edge probability distribution over its attached edges (in the figure: the numbers in front of the ‘‘|’’ character adjacent to the edges), according to
which an edge is selected conditional in being at that vertex.
doi:10.1371/journal.pcbi.1002877.g001
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running the program requires a standard UNIX server environ-

ment (ideally with multiple CPU cores and §64 GB RAM).

To give an idea of the expected runtime, producing the graph

for HLA-A for the first experiment presented in the ‘‘Results’’

section took approximately 137 CPU hours (user plus system time

for a single CPU; the program supports parallelization via

openMP, so that the actual runtime on modern multi-CPU

systems is much lower); carrying out inference for a single

individual required approximately 4 CPU seconds (user plus

system time).

Like HLA*IMP, HLA*IMP:02 is also available as a front-end/

back-end web service that integrates data preparation, QC and

imputation. Figure 2 shows the steps typically required to produce

HLA type imputations, starting from SNP genotypes (for example

in PLINK [17], CHIAMO [18] or VCF formats). The system

supports virtually all currently employed genotyping platforms,

including genotyping arrays from Affymetrix, Illumina, and the

Immunochip. The front-end converts genotype data into the

format used by HLA*IMP:02, carries out quality control based on

data completeness and aligns SNP genotypes to the positive strand

(as defined in HapMap). All output data from the front-end can be

directly uploaded to the HLA*IMP:02 server. Run in standard

mode, the HLA*IMP:02 back-end will also produce allele- and

locus-specific cross-validation estimates of accuracy, specific to the

SNPs available in the user dataset. To ensure data protection and

security, sample identifiers have to be anonymized prior to

submission. The server stores all user data in a specially protected

area, with no read access for the normal web server processes.

Upon completion of an imputation job, the server generates a

secondary access key, which is directly sent to the user; only the

combination of access key and user account password will enable

access to the imputation results.

HLA*IMP:01
We compare the performance of HLA*IMP:02 to HLA*IMP,

which we refer to as ‘‘HLA*IMP:01’’ for clarity. HLA*IMP:01 has

been described elsewhere [1,2]. Windows of 400 SNPs around the

classical HLA loci and population prior frequencies, estimated from

the reference panel, for classical HLA alleles were found to give good

results, and these settings are identical to those used by the Internet

implementation of HLA*IMP (http://oxfordhla.well.ox.ac.uk) and

those used for recent genome-wide association studies [3,4,19].

Validation
We validate HLA type imputations at the genotype level in a

locus-specific manner, i.e. compare two unordered sets with two

elements each for each individual and locus, one set (I )

representing the imputation results and the other (L) containing

the lab-derived types. We only consider individuals who carry two

HLA alleles typed at 4-digit resolution at the locus under

validation or one allele at 4-digit resolution and one missing

allele. For 2-digit (serological properties of the HLA alleles)

validation, we consider the same individuals, but we set the last 2

digits of each HLA allele to ‘00’ (this will lead to an underestimate

of accuracy in some cases, as there are some serologically defined

2-digit allele groups that map to more than one pair of leading two

digits). We may or may not apply a posterior probability call

threshold T on the per-allele level (see Section ‘‘HLA type

inference’’ of the Supporting Text S1 for a description of how we

calculate allele-specific posterior probabilities) to our imputations

before validating.

If there is no missing data in L, there are three possible cases:

N 0 imputations left after thresholding: we count 0 correctly

imputed alleles out of 0.

N 1 imputation (I1) left after thresholding: we count 1 correctly

imputed alleles out of 1 if I1[L, otherwise 0 out of 1.

N 2 imputations left after thresholding: we count 0 correct

imputations out of 2 if (I16[L) ^ (I26[L), 1 out of 2 if

(I1[L) �_ (I2[L), 2 out of 2 otherwise. (�_ is the ‘‘exclusive

OR’’ operator, which is true if and only if exactly one of the

arguments is true).

If L~fmissing,Ag (i.e. only one allele has been typed), there

are also three possible cases:

N 0 imputations left after thresholding: we count 0 correctly

imputed alleles out of 0.

N 1 imputation (I1) left after thresholding: we count 1 correctly

imputed alleles out of 1 if I1~A, otherwise 0 out of 1.

N 2 imputations left after thresholding: we count 1 correct

imputations out of 1 if I1~A or I2~A or both.

In terms of thresholding strategies, we use either no threshold;

or a threshold of T = 0.7 for both models; or a threshold of T = 0.7

for HLA*IMP:01 (as recommended in Dilthey et al. [1]) and a

threshold matched to obtain equal call rates for HLA*IMP:02.

The last strategy is only employed to ensure comparability of

Figure 2. Standard workflow for HLA*IMP:02. Standard workflow for HLA*IMP:02: standard output data from popular genotyping platforms, for
example current Illumina or Affymetrix chips, are converted into the HLA*IMP format using the locally installed front-end program. The front-end also
carries out necessary steps of quality control, such as aligning SNP strandedness. The output files from the front-end are submitted to the HLA*IMP:02
server, which processes the data and produces imputations (posterior probabilities over pairs of alleles as well as a ‘‘best guess’’ pair of two alleles
with associated quality scores).
doi:10.1371/journal.pcbi.1002877.g002
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results for the first baseline experiment (see next section), in which

we compare the performance of HLA*IMP:01 and HLA*IMP:02

on a homogeneous dataset.

At the per-locus level, we use concordance (which is, at the per-

locus level, identical to PPV) as a measure of accuracy. We also

provide more detailed statistics at the allele level (see below).

Data
The experiments presented in this paper are based on different

combinations of two datasets.

The first set, denoted ‘‘Golden Set’’ (GS), has been described

elsewhere [1] and comprises 2512 individuals from the 1958 Birth

Cohort (http://www.b58cgene.sgul.ac.uk/), the HapMap CEU

[20] and the CEPH CEU+ [7] cohorts. Genotyping of the GS was

carried out on the Illumina 1.2M and Affymetrix Genome-Wide

Human SNP Array 6.0 chips. HLA typing methods vary

according to the original cohort. Protocols for 1958 BC HLA

genotyping are described online (https://www-gene.cimr.cam.ac.

uk/public_data/HLA/HLA.shtml). CEU and CEU+ were typed

using exon-sequencing methods.

The second set, denoted ‘‘HLARES_ALL’’, has been provided

by GlaxoSmithKline and comprises (post quality control, as

described in Dilthey et al. [1]) 1460 individuals from diverse,

though mainly European or European-ancestry, populations (see

Supporting Table S2). The individuals in HLARES_ALL were

drawn from several clinical trials and typed on the Illumina 1 M

SNP genotyping platform, and classical HLA type information

(derived by exon sequencing) is available for many of them (see

Table 1 for details). Genome-wide principal components analysis

(PCA) of the samples in HLARES_ALL was carried out using the

program EIGENSTRAT [21].

We resolve ambiguous HLA type information by using the

maximum population frequency call. Besides that, we treat all

HLA genotypes ‘‘as is’’; that is, we make no attempt to control, for

example, for changes of HLA nomenclature or allele databases.

This might lead to slight underestimates of accuracy (in the worst

case, we do not recognize identical alleles as identical).

In the first experiment (homogeneous reference), we evaluate

the performance of statistical HLA type imputation (HLA-A , -B , -

C , -DQA1 , -DQB1 and -DRB1) on cross-European samples, based

on a mainly British reference panel. We use the GS as reference

panel to impute classical HLA types of those samples in

HLARES_ALL with self-declared European ancestry (HLARE-

S_EU) and measure concordance with lab-derived HLA type

information where available. Supporting Table S2 describes the

distribution of countries the individuals in HLARES_EU were

sampled from. There are 6056 SNPs in the extended MHC region

(xMHC, here defined as the chromosomal region on chromosome

6 from position 25,921,129 to position 33,535,328, build 36; see

Horton et al. [22]) in the intersection of the GS and HLARES_EU

datasets. To mirror the context in which HLA*IMP:01 was

applied in recent genome-wide association studies [3,4,19], we

further restrict the available SNP set to those also present in one of

them [3], resulting in 2020 SNPs.

In the second experiment (medium heterogeneity), we evaluate

the performance of statistical HLA type imputation on European

samples, based on a cross-European reference panel. To obtain a

cross-European reference panel (GS&HLARES_EU), we merge

the GS and HLARES_EU datasets, keeping only SNPs in the

intersection of the two panels (6056 xMHC SNPs). We randomly

split GS&HLARES_EU into two panels, and use the first one

(GS&HLARES_EU 2/3, containing approximately 2/3 of the

original data) as reference, and the second one (GS&HLAR-

ES_EU 1/3, approximately 1/3 of the original data) as validation

panel. Referring to the increased population structure in

GS&HLARES_EU 2/3 as compared to GS, we call GS&HLAR-

ES_EU 2/3 a heterogeneous reference panel. We measure

concordance with experimentally-derived HLA type information

where available. We use the data on additional loci present in

GS&HLARES_EU (HLA-DPB1 , -DRB3 , -DRB4 , -DRB5) to

evaluate how well their allelic states can be imputed. Also, in a

variation of the second experiment, we modify the SNP density in

the xMHC region to investigate to what extent performance will

depend on the selected SNP genotyping platform and data

missingness profiles.

In the third experiment (high heterogeneity), we evaluate the

performance of statistical HLA type imputation on multi-ethnic

samples, based on a multi-ethnic reference panel. To obtain a

multi-ethnic reference panel (GS&HLARES_ALL), we merge the

GS and HLARES_ALL datasets. We also include the HapMap

YRI cohort [20], as individuals self-reporting as of African

ancestry constitute a subset of HLARES_ALL. We keep all

available SNP genotypes from the intersection of GS and YRI

(7733 SNPs from GS of which 7632 xMHC SNPs are also present

in YRI), and combine them with the SNP genotypes from

HLARES_ALL (6050 SNPs, setting the remaining 1582 SNP

genotypes to ‘‘missing’’). The resulting set GS&HLARES_ALL

has 7632 xMHC SNPs. We randomly split GS&HLARES_ALL in

two panels, and use the first one (GS&HLARES_ALL 2/3,

containing approximately 2/3 of the original data) as reference,

and the second one as (GS&HLARES_ALL 1/3, approximately

1/3 of the original data) as validation panel. We call GS&HLAR-

ES_ALL 1/3 a ‘‘highly heterogeneous’’ reference panel. Note that

GS&HLARES_ALL is still dominated by samples of European

origin. We measure concordance with experimentally-derived

HLA type information where available.

Table 1 provides a summary of the number of individuals and

HLA alleles present in all reference and validation panels.

Results

We have repeated some of the initial HapMap-based experi-

ments from Dilthey et al. [1] to investigate the effects of the

methodological innovations proposed in this paper (see Supporting

Table S1 and Section ‘‘Properties of the presented model and

parameter inference’’ in the Supporting Text S1). We find that

allowing for path uncertainty has a positive effect across all

examined loci. The additional localization criteria, though

theoretically appealing, do not consistently improve accuracy

across loci (see Supporting Text S1, Section ‘‘Properties of the

presented model and parameter inference’’). Based on our initial

experiments, localization is not used for HLA-B and HLA-DRB1 .

On a homogeneous reference panel (first experiment, GS),

HLA*IMP:02 achieves the same level of performance as

HLA*IMP (see Table 2). Measured at six classical HLA loci

(HLA-A , -B , -C , -DQA1 , -DQB1 and -DRB1), HLA*IMP:02

achieves an average 4-digit resolution accuracy of 94% at an

average call rate of 97%, vs. 93% accuracy at a call rate of 97% for

HLA*IMP:01 (call threshold T = 0.7 for HLA*IMP:01 and

matched to obtain equal or higher call rates for HLA*IMP:02).

Locus-specific performance is very similar for both models. We

observe the lowest accuracy at HLA-DQA1 (88%) and the lowest

call rate at HLA-DRB1 (90%).

On a heterogeneous reference panel (second experiment,

GS&HLARES_EU 2/3), HLA*IMP:02 achieves an average

accuracy of 97% at an average call rate of 97% (see Table 3).

HLA*IMP:01, in contrast, achieves an average accuracy of 93% at

an average call rate of 93% (using a call threshold of T = 0.7 for

Multi-Population Classical HLA Type Imputation
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both models). The most problematic locus for HLA*IMP:02 is

HLA-DRB1 , with an achieved accuracy/call rate of 95%/91%.

Even without call threshold, HLA*IMP:02 achieves an all-loci

average accuracy of 96% (vs. 90% for HLA*IMP:01). At T = 0.00,

HLA*IMP:02 outperforms HLA*IMP:01 at every locus, by 6% on

average. Applied to HLA-DPB1 and the allelic state of the DRB

paralogs (see Supporting Table S3), HLA*IMP:02 achieves an

accuracy of 90% on DPB1 without any call threshold. Due to the

limitations of the data set, we can only evaluate the performance at

the DRB paralogous loci at 2-digit resolution, including one

pseudo-allele for absence from a haplotype. We find the

imputations to be correct in §94% of cases (T = 0.00, very

similar results obtained for HLA*IMP:01, data not shown).

HLA*IMP:02 produces well-calibrated imputations (see Support-

ing Figure S1).

By analyzing allele- and locus-specific error profiles, we can

identify factors influencing the imputation accuracy of

HLA*IMP:02 (see Figure 3). First, we note that most alleles are

imputed reliably at 4-digit resolution, in particular those with

higher frequencies in the reference panel. Alleles that exhibit

problems at 4-digit imputation are typically correctly imputed at 2-

digit resolution. Second, we can distinguish between at least three

classes of problems. Some alleles, for example HLA-A*33:01, are

not present in the reference dataset at all. They can therefore not

be correctly imputed. Other alleles, for example HLA-B*27:02,

are present in the reference dataset, but at low frequencies. Non-

calls and 4-digit errors accumulate for these alleles. Third, some

alleles, for example DRB1*01:01, are better represented in the

reference panel, but there are still some problems with imputing

them correctly. We note that these error modes are also seen in

HLA*IMP:01 and that the identified classes of error also apply to

the homogeneous reference experiment (see Supporting Figures

S2, S3, S4). Finally, there is another abundant type of error, seen

only in HLA*IMP:01 and not observed in the low heterogeneity

case, which drives the observed drop in performance difference

relative to HLA*IMP:02: classification problems for well-repre-

sented alleles. It seems likely that this is due to within-Europe

population structure and heterogeneity in haplotype backgrounds,

which the model of HLA*IMP:01 cannot take into account

appropriately. We provide allele-specific measures of sensitivity,

specificity, PPV and r2, based on HLA*IMP:02, for the first two

experiments in Supporting Tables S4 and S5.

To investigate how strong an effect the utilized SNP genotyping

array and missing data in the imputation dataset will have on

expected accuracy, we carry out a variation of the second

experiment. Instead of separately evaluating a range of genotyping

platforms and missingness profiles, we present two generic

experiments, focusing on SNP density in the xMHC region: we

Table 2. Baseline validation on a homogeneous reference panel.

Threshold Locus # Validated HLA*IMP:02 HLA:IMP:01

Call Rate Accuracy T Call Rate Accuracy T

T = 0.00 HLA-A 574 1.00 0.96 1.00 0.90

HLA-B 2002 1.00 0.90 1.00 0.93

HLA-C 596 1.00 0.96 1.00 0.96

HLA-DQA1 446 1.00 0.87 1.00 0.87

HLA-DQB1 758 1.00 0.98 1.00 0.97

HLA-DRB1 1730 1.00 0.88 1.00 0.89

T = Matched HLA-A 574 0.96 0.96 0.55 0.94 0.91 0.700

HLA-B 2002 0.98 0.92 0.40 0.98 0.94 0.700

HLA-C 596 0.99 0.96 0.60 0.99 0.97 0.700

HLA-DQA1 446 0.99 0.88 0.40 0.99 0.88 0.700

HLA-DQB1 758 0.99 0.98 0.60 0.99 0.97 0.700

HLA-DRB1 1730 0.90 0.93 0.60 0.90 0.93 0.700

Non-thresholded and thresholded HLARES validation results for HLA*IMP:02 and HLA*IMP:01: the complete GS is used to impute HLARES_EU samples. Accuracy (PPV) is
measured at 4-digit resolution. ‘‘# Validated’’ refers to the number of validated alleleles (pre-thresholding). Note that the call threshold for HLA*IMP:02 was matched to
obtain equal or higher call rates than with HLA*IMP:01.
doi:10.1371/journal.pcbi.1002877.t002

Table 3. Multi-population European validation results.

Threshold Locus
#
Validated HLA*IMP:02 HLA:IMP:01

Call
Rate Accuracy

Call
Rate Accuracy

T = 0.00 HLA-A 808 1.00 0.97 1.00 0.91

HLA-B 1646 1.00 0.95 1.00 0.89

HLA-C 752 1.00 0.96 1.00 0.91

HLA-DQA1 194 1.00 0.97 1.00 0.87

HLA-DQB1 934 1.00 0.98 1.00 0.92

HLA-DRB1 1358 1.00 0.91 1.00 0.87

T = 0.70 HLA-A 808 0.98 0.97 0.94 0.94

HLA-B 1646 0.96 0.97 0.93 0.92

HLA-C 752 0.99 0.97 0.94 0.94

HLA-DQA1 194 0.96 0.98 0.93 0.90

HLA-DQB1 934 0.99 0.98 0.94 0.94

HLA-DRB1 1358 0.91 0.95 0.89 0.92

Medium heterogeneity non-thresholded and thresholded cross-validation
results for HLA*IMP:02 and HLA*IMP:01: GS&HLARES_EU 2/3 is used to impute
GS&HLARES_EU 1/3. Accuracy (PPV) is measured at 4-digit resolution. ‘‘#
Validated’’ refers to the number of validated alleleles (pre-thresholding).
doi:10.1371/journal.pcbi.1002877.t003
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randomly delete 70% and 90% of the SNP genotypes from the

inference panel (independently for each individual, to minimize

sampling effects), while the graph from the second experiment

remains unchanged. In the 70% scenario, each individual remains

with w1500 SNPs in the xMHC region, which is comparable to

the SNP density of many 500 K arrays. In the 90% scenario,

approximately 600 SNPs in the xMHC region remain, which is

substantially less than the number provided by older e300 K

genotyping arrays. We observe that even with low SNP densities,

the observed performance of HLA*IMP:02 is relatively stable:

Setting 70% of the SNP genotypes in the inference panel

(GS&HLARES_EU 1/3) to ‘‘missing’’, the drop in achieved

per-locus accuracy is §1% (at a call threshold of T = 0.00, see

Table 4). Setting 90% of the SNP genotypes in the inference panel

to ‘‘missing’’, the maximum loss in accuracy is 5% for all loci but

DQA1 (probably related to the smaller amount of reference data

Figure 3. Per-allele accuracies on a diverse European reference panel (HLA*IMP:02). Per-allele analysis of HLA*IMP:02 imputation accuracy
for six classical loci in the GS&HLARES_EU cross-European validation experiment at a call threshold of T = 0.70. The x-axis represents the different HLA
alleles in the validation panel. The downward blue bars indicate how often each allele appears in the reference panel (the GS&HLARES_EU 2/3
dataset). Imputation success is indicated by the upward stack plots: green indicates correct imputations at 4-digit HLA type resolution; orange
indicates correct imputations at 2-digit resolution; black indicates alleles below the call threshold; red indicates incorrect imputations. Non-calls and
imputations which are only correct at 2-digit resolution accumulate in the alleles which are rare or not present at all in the reference panel.
doi:10.1371/journal.pcbi.1002877.g003
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for this locus, see Table 1), where it is 7%. Of note, many

reference panel SNPs are present on the Immunochip platform;

repeating the second experiment constrained to the Immunochip

SNP set for the imputation panel shows virtually the same results

as the 70% experiment (data not shown).

Increasing the heterogeneity in the reference panel (third

experiment, GS&HLARES_ALL 2/3) by including individuals of

other ethnicities (African-ancestry, Asian, Hispanic, third exper-

iment) only slightly decreases the achieved performance on the

European validation samples for HLA*IMP:02 (see Table 5),

yielding an average accuracy of 97% and an average call rate of

95% (T = 0.70). At 4-digit resolution, performance on the non-

European samples is markedly lower, with an average accuracy

and an average call rate of 87% (T = 0.70). Imputation accuracy is

lowest for the Asian samples (average accuracy 76% at T = 0.00)

and comparable for African-ancestry and Hispanic samples (84%

and 85% respectively, at T = 0.00). There are more pronounced

locus-specific differences in the non-European validation data: In

the African-ancestry samples and at T = 0.00, for example,

accuracy at HLA-DRB1 is at 71%, whereas it is at 97% at HLA-

C . At 2-digit resolution, alleles are imputed more reliably: average

accuracy at T = 0.00 is 90% for Asian samples (ranging from 78%

at HLA-B to 98% at HLA-DRB1); 93% for samples of African

ancestry (ranging from 82% at HLA-B to 100% at HLA-C/DQA1/

DQB1); and 99% for Hispanic samples (ranging from 97% at HLA-

B to 100% at all other loci);

Discussion

Better imputation of classical HLA alleles is an important goal

in enabling association studies to understand the genetic risk of

many complex and infectious diseases. We have developed

HLA*IMP:02, a statistical model for the imputation of classical

HLA types, which attempts to address problems arising in

performing imputation from multiple heterogeneous (both in

experimental origin and ethnicity) data sets. We have shown that

HLA*IMP:01 (our previous method; [1,2]) and HLA*IMP:02

achieve similar levels of performance on homogeneous reference

panels, but that HLA*IMP:02 clearly outperforms HLA*IMP:01

on heterogeneous European reference panels, yielding accuracies

and call rates §95% at 4-digit resolution in nearly all European

scenarios. Using HLA*IMP:02 instead of HLA*IMP:01 can

therefore be expected to increase power and accuracy in cross-

European genome-wide association studies.

The improved performance of HLA*IMP:02 (when compared

with HLA*IMP:01) is likely due to the path-based approach that

allows for HLA alleles to appear on multiple haplotype

backgrounds, a known consequence of population stratification

in the HLA region. To further investigate this hypothesis, we have

examined the local haplotype structure around the HLA-A*02:01

allele in GS&HLARES_EU, as inferred (and used) by

HLA*IMP:01 (Supporting Figure S5, part B). From visual

inspection of the figure, it is clear that there are at least three

major haplotypic backgrounds for 02:01 (when inspecting the

corresponding figure for the GS, we find two major haplotypic

backgrounds; Supporting Figure S5, part A). What is more, when

comparing the haplotypes that HLA*IMP:01 correctly imputes

with those that it doesn’t, we find that there are features which

appear virtually exclusively in the second group (marked in S11

part B). Interestingly, these features are also present in the group of

haplotypes that serve as reference panel, but the model does not

seem to utilize this information in the right way. This is consistent

with our interpretation that the model of HLA*IMP:01 does not

cope well with haplotypic heterogeneity. HLA*IMP:02, on the

other hand, can accommodate haplotypic heterogeneity and

imputes A*02:01 nearly perfectly in the same experiment.

The observed performance of HLA*IMP:02 is relatively stable

under high levels of missing data in the inference panel. This

property represents an important improvement upon

HLA*IMP:01, which offered no conceptually consistent way

(except for repeating the computationally intensive process of SNP

selection) towards dealing with missing SNPs in the inference

panel. Of note, the HLA*IMP:02 back end web service will

automatically carry out the SNP density experiment presented

here, constraining the set of available SNPs to those found in the

user dataset. The results from this experiment (including average

per-locus accuracies and PPV, sensitivity and specificity for each

allele) are included in the archive file which contains the main

imputations.

The model of HLA*IMP:02 could handle pre-phased data in a

straightforward way. There is no evidence to suggest that recent

encouraging results from SNP genotype imputation [23] do not

apply to pre-phasing with the aim of HLA type imputation.

However, in light of the complex regional haplotype structure and

high levels of diversity, we believe that the effect of pre-phasing on

HLA type imputation accuracy needs to be studied in more detail.

At 2-digit resolution, HLA*IMP:02 achieves average accuracies

§90% for all tested ethnicities using a multi-ethnic reference panel.

These results suggest that the model’s ability to deal with

heterogeneity in the reference set extends to highly diverse panels.

Moreover, extensions of the reference panel in a way that matches

imputation study panels can be expected to furthermore increase (4-

digit) performance, in particular for samples that are not well-

represented by the current reference. We illustrate this effect in

Figure 4 for HLA-DRB1 , one of the more challenging loci for HLA

type imputation. The figure displays samples from HLARES_ALL

1/3 stratified by the samples’ first two principal components (it is

well-known that PCA can be used to control for population

stratification [24] and is informative of relatedness [25]). In one

experiment, we use an exclusively European reference to impute the

samples (left-hand panel). In the other experiment, we make use of

the full reference panel GS&HLARES ALL 2/3 (right-hand panel).

Particularly samples in the periphery of PC space benefit from

improving reference panel size and match with the imputation

panel, whereas samples in the proximity of European data are

hardly affected. Averaged over all loci, accuracy for the non-

European samples increases by 8% when including the non-

European reference data (data not shown). These observations are

consistent with results from SNP genotype imputation, where using

matched and diverse reference panels is also known to have a

positive effect on accuracy [11,12,26,27].

Table 4. Missing data in the inference panel.

Locus # Validated 70% missing 90% missing

HLA-A 808 0.96 0.94

HLA-B 1646 0.95 0.93

HLA-C 752 0.95 0.94

HLA-DQA1 194 0.96 0.90

HLA-DQB1 934 0.97 0.95

HLA-DRB1 1358 0.90 0.86

4-digit resolution accuracies (PPV) when 70% and 90% of the inference panel
SNP genotypes (GS&HLARES_EU 1/3) in the second experiment are randomly
set to ‘‘missing’’. No call threshold is employed. ‘‘# Validated’’ refers to the
number of validated alleleles.
doi:10.1371/journal.pcbi.1002877.t004
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Table 5. Multi-ethnic validation results.

Threshold Population Locus # Validated Call Rate Accuracy 4-digit Accuracy 2-digit

T = 0.00 African-American/African HLA-A 30 1.00 0.73 0.83

HLA-B 44 1.00 0.73 0.82

HLA-C 30 1.00 0.97 1.00

HLA-DQA1 28 1.00 1.00 1.00

HLA-DQB1 30 1.00 0.87 1.00

HLA-DRB1 34 1.00 0.71 0.91

Asian HLA-A 28 1.00 0.79 0.96

HLA-B 110 1.00 0.68 0.78

HLA-C 28 1.00 0.82 0.89

HLA-DQA1 22 1.00 0.73 0.91

HLA-DQB1 36 1.00 0.83 0.89

HLA-DRB1 102 1.00 0.72 0.98

European HLA-A 824 1.00 0.96 0.97

HLA-B 1662 1.00 0.95 0.98

HLA-C 752 1.00 0.97 0.99

HLA-DQA1 206 1.00 0.96 0.99

HLA-DQB1 924 1.00 0.97 0.99

HLA-DRB1 1356 1.00 0.90 0.99

Hispanic HLA-A 28 1.00 0.82 1.00

HLA-B 126 1.00 0.63 0.97

HLA-C 36 1.00 0.92 1.00

HLA-DQA1 28 1.00 0.93 1.00

HLA-DQB1 40 1.00 0.97 1.00

HLA-DRB1 128 1.00 0.80 0.98

T = 0.70 African-American/African HLA-A 30 0.93 0.79 0.89

HLA-B 44 0.89 0.79 0.85

HLA-C 30 1.00 0.97 1.00

HLA-DQA1 28 1.00 1.00 1.00

HLA-DQB1 30 0.93 0.89 1.00

HLA-DRB1 34 0.59 1.00 1.00

Asian HLA-A 28 0.96 0.81 1.00

HLA-B 110 0.71 0.85 0.91

HLA-C 28 0.86 0.79 0.88

HLA-DQA1 22 0.82 0.78 0.94

HLA-DQB1 36 0.83 0.90 0.93

HLA-DRB1 102 0.74 0.83 1.00

European HLA-A 824 0.95 0.97 0.98

HLA-B 1662 0.95 0.97 0.99

HLA-C 752 0.99 0.97 0.99

HLA-DQA1 206 0.97 0.97 0.99

HLA-DQB1 924 0.99 0.98 0.99

HLA-DRB1 1356 0.87 0.95 0.99

Hispanic HLA-A 28 1.00 0.82 1.00

HLA-B 126 0.75 0.73 0.97

HLA-C 36 0.94 0.97 1.00

HLA-DQA1 28 0.86 0.96 1.00

HLA-DQB1 40 0.95 1.00 1.00

HLA-DRB1 128 0.73 0.88 1.00

High heterogeneity non-thresholded and thresholded cross-validation results for HLA*IMP:02, stratified by ethnicity of the imputed samples. GS&HLARES_ALL 2/3 is used to
impute GS&HLARES_ALL 1/3. Accuracy (PPV) is measured at 4-digit resolution and at 2-digit resolution. ‘‘# Validated’’ refers to the number of validated alleleles (pre-thresholding).
doi:10.1371/journal.pcbi.1002877.t005
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In summary, the model of HLA*IMP:02 contributes to solving

the important challenge of making HLA type inference from

combined multi-population reference panels. Raising the accuracy

of 4-digit imputation accuracy for non-European populations to

the level currently observed for European samples is an important

future goal that will require collection of reference data from other

populations. However, the framework developed here should

enable such integration to happen without compromising accuracy

in European-ancestry populations.

Supporting Information

Figure S1 Calibration HLA*IMP:02. Calibration plot

HLA*IMP:02, second experiment, medium heterogeneity. The red

points show expected (x-axis) and achieved mean accuracies (y-axis) in

each bin of step size 0.1, and the blue line is a plot of x = y. Note that

the first four data points (bins 0–3) are only based on 37 individuals.

(TIF)

Figure S2 Per-allele analysis for HLA*IMP:02/
HLARES. Per-allele analysis of HLA*IMP:02 imputation accu-

racy for six classical loci in the HLARES validation experiment

(first experiment, homogeneous reference) at a call threshold of

T = 0.70. The x-axis represents the different HLA alleles in the

validation panel. The downward blue bars indicate how often each

allele appears in the reference panel (the GS dataset). Imputation

success is indicated by the upward stack plots: green indicates

correct imputations at 4-digit HLA type resolution; orange

indicates correct imputations at 2-digit resolution; black indicates

alleles below the call threshold; red indicates incorrect imputa-

tions.

(TIF)

Figure S3 Per-allele analysis for HLA*IMP:01/
HLARES. Per-allele analysis of HLA*IMP:01 imputation

accuracy for six classical loci in the HLARES validation

experiment (first experiment, homogeneous reference) at a call

threshold of T = 0.70. The x-axis represents the different HLA

alleles in the validation panel. The downward blue bars indicate

how often each allele appears in the reference panel (the GS

dataset). Imputation success is indicated by the upward stack plots:

green indicates correct imputations at 4-digit HLA type resolution;

orange indicates correct imputations at 2-digit resolution; black

indicates alleles below the call threshold; red indicates incorrect

imputations.

(TIF)

Figure S4 Per-allele analysis for HLA*IMP:01/
GS&HLARES_EU. Per-allele analysis of HLA*IMP:01 imputa-

tion accuracy for six classical loci in the GS&HLARES_EU

validation experiment (second experiment, medium heterogeneity

reference) at a call threshold of T = 0.70. The x-axis represents the

different HLA alleles in the validation panel. The downward blue

bars indicate how often each allele appears in the reference panel

(the GS dataset). Imputation success is indicated by the upward

stack plots: green indicates correct imputations at 4-digit HLA

type resolution; orange indicates correct imputations at 2-digit

resolution; black indicates alleles below the call threshold; red

indicates incorrect imputations.

(TIF)

Figure S5 Barcode plot for HLA-A*02:01 in in GS and
GS&HLARES_EU. This plot shows the inferred haplotype

structure (‘‘barcode plot’’) for HLA-A*02:01 in the first (based

on GS, part A) and second experiment (based on GS&HLAR-

ES_EU, part B). Each row represents one haplotype, and each

SNP is depicted as a little square. The colouring of the boxes

indicates whether the haplotype carries the major SNP allele

(bright box) or a minor allele (dark box). The black/white rows

Figure 4. Accuracy comparison between complete and European-restricted reference panels. PCA-stratified accuracy comparison (HLA-
DRB1) between the complete reference panel (GS&HLARES_ALL, right plot) and a European-restricted reference panel (left side) for the high
heterogeneity scenario (imputing GS&HLARES_ALL 1/3, only samples from HLARES displayed). In each quadrant, mean accuracy (PPV) is indicated by
color. The red triangle indicates the (approximate) centre of the European reference data. Note that incorporating the non-European reference data
increases accuracy in particular for the non-European samples.
doi:10.1371/journal.pcbi.1002877.g004
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represent the haplotypes carrying the 02:01 allele in the reference

panel. Red and green rows represent haplotypes carrying 02:01 in

the validation panel, with green indicating successful imputation

and red indicating misimputation. We only show SNPs selected by

HLA*IMP:01 in the process of SNP selection, and the inferred

haplotypes are taken from the phased reference panel for

HLA*IMP:01. The inferred haplotype structure in the second

experiment in more complex than in the first experiment.

Comparing correctly and incorrectly imputed haplotypes in the

second experiment, it is clear that there are features (highlighted)

which appear virtually exclusively in incorrectly imputed haplo-

types (although they are present in the reference panel). Note that

A*02:01 is imputed virtually perfectly by HLA*IMP:02 in this

experiment, consistent with our hypothesis that HLA*IMP:02 is

more tolerant of heterogeneous haplotype structures.

(TIF)

Table S1 HapMap-based BC58 validation accuracy. Accu-

racies (PPV) for the HapMap-based BC58 validation, as described in

Leslie et al. [2] and Dilthey et al. [1]. No call threshold is employed.

The column ‘‘HLA*IMP:02’’ refers to the full model with error

parameters ! = 0 and localization (other parameters set to accommo-

date the much reduced sample size). In column I, the error probabilities

for sampling from the graph (mS ) and for building the graph mB are set

to 0 (all other parameters equal to the column ‘‘HLA*IMP:02’’). In

column II, the error probability for building the graph is set to 0, and in

column III, the error probability for sampling from the graph is set to 0.

In column IV, localization is deactivated.

(DOCX)

Table S2 Countries and ethnicities in HLARES. Country

and ethnicity of samples in the HLARES_EU and HLARES_ALL

datasets.

(DOCX)

Table S3 HLA-DPB1 and DRB3-5. HLARES_EU cross

validation for additional loci and structural variation (second

experiment, medium heterogeneity): 2/3 of the HLARES_EU

dataset are used as reference to impute the remaining 1/3. No call

threshold is employed. Accuracy (PPV) for HLA-DPB1 measured

at 4-digit resolution, at 2-digit resolution (including one pseudo-

allele for absence) for DRB orthologs.

(DOCX)

Table S4 HLA-DPB1 and DRB3-5. Allele-specific sensitivity,

specificity, PPV and r2 for the first experiment (HLA*IMP:02, GS

{w HLARES_EU). ‘‘NValidation’’ specifies how often an allele

appears in the validation data (according to classical typing results,

which we treat as the truth in this experiment). ‘‘NImputation’’

specifies how often an allele appears in the imputations for the

validation data. The following columns specify sensitivity,

specificity, PPV and r2 for each allele. All numbers are based on

‘‘best-guess’’ called alleles.

(DOCX)

Table S5 HLA-DPB1 and DRB3-5. Allele-specific sensitivity,

specificity, PPV and r2 for the second experiment (HLA*IMP:02,

GS&HLARES_EU 2/3 {w GS&HLARES_EU 1/3). ‘‘NVali-

dation’’ specifies how often an allele appears in the validation data

(according to classical typing results, which we treat as the truth in

this experiment). ‘‘NImputation’’ specifies how often an allele

appears in the imputations for the validation data. The following

columns specify sensitivity, specificity, PPV and r2 for each allele.

All numbers are based on ‘‘best-guess’’ called alleles.

(DOCX)

Text S1 The HLA*IMP:02 model and algorithms.
Mathematical and algorithmic characterization of the haplotype

graph model of HLA*IMP:02, allowing for integrating over path
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Before describing the algorithmic details of HLA*IMP:02, we give a high-level overview.

In genotype imputation, a reference panel with high marker density and a statistical model

of population haplotype structure are used to impute missing markers in imputation panels

with lower marker density [1]. The situation we deal with in this paper can be described

as follows: suppose there is a reference panel R, consisting of the genotype data GR of NR

individuals, typed at a (non-empty) set of loci L on the same chromosome. Also, there is

an imputation panel I, consisting of the genotype data GI of NI individuals, typed at a

(non-empty) set of loci L′ (L′ ⊆ L). The algorithm we present here then

1. uses R to construct a model of the haplotype structure of the haplotypes present in

R. We denote this model as M , and it will, like many other models in population

genetics, assign a likelihood to every possible haplotype over the L loci. M belongs

to the class of haplotype graph models (formally described below).

2. treats each individual in I independently, and makes inference on the loci of interest

{L \ L′} by integrating over possible underlying haplotypes. That is, for the i-th

individual in I, we evaluate the conditional probability P((h1, h2) |GI,i,M), where

M is our model of haplotype structure, GI,i the genotype data of the i-th individual

Ii in I and (h1, h2) a pair of haplotypes for Ii at the specified L loci. Each (h1, h2)

implies a genotype at all loci we may want to consider, and we average over these

according to P((h1, h2) |GI,i,M). Note that no information from I is used to build

M .

In the following, we will therefore describe two separate tasks: how to infer a haplotype

graph model M from a set of genotyped individuals and how to use this model to infer

the missing genotypes of an individual with genotype GI,i. Note that, although we use a

haplotype structure model, haplotype inference (phasing) is not our aim in this paper: we

are only interested in the correctness of the resulting genotype imputations. Note also that

we will only make explicit reference to HLA types during later stages – for now, we assume

that a locus may have an arbitrary number of alleles, and do therefore not fundamentally

differentiate between a SNP and a classical HLA locus.

Note that Figures 1, 3 and 2 in this document provide a compressed view of the

algorithm’s most important features.
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Haplotype graph models and their induced HMMs

We give formal definitions of haplotypes, haplotype graph models and how they relate to

HMMs.

We define haplotypes to be strings of symbols of length T = |L| (therefore T > 0),

where at any given position p ∈ {0 .., (T − 1)} the symbols come from some predefined

set Ap, the model alphabet. In the context of genetics the model alphabet may be, for

example, the set of possible nucleotides (A, C, G and T).

Let the directed connected graph M consist of the directed edges E and the vertices

V , i.e. M = (V,E). If va, vb ∈ V then we define (va, vb) to be the edge in E running from

va to vb, provided such an edge exists, and we say (va, vb) ∈ E. For haplotype graphs, each

vertex v ∈ V has an associated well-defined level function l(v), according to the following

definition. There is exactly one vertex v0 with no incoming edges and l(v0) = 0. This

vertex is called the root vertex. For every (va, vb) ∈ E, we define l(vb) = l(va) + 1. All

vertices with no outgoing edges are called “final vertices”, and in the case of haplotype

graphs all such vertices have the same level, T . Each level can be thought of as a genetic

locus. At each level p there is a set of possible emission symbols, the “model alphabet”Ap.

Each edge (va, vb) at level p (i.e. l(va) = p) has an associated emission symbol from Ap.

There are no two edges with the same emission symbol originating from the same vertex.

Each edge has an associated transition probability, and the transition probabilities of all

edges emanating from a non-final vertex add up to 1.

Haplotype graphs probabilistically generate strings of the same length (haplotypes).

We give a description of the algorithm that produces haplotypes from a haplotype graph

model. Begin at vertex v0. If at vertex va, select one outgoing edge e = (va, vb) according

to the probabilities attached to the edges emanating from va. Emit the symbol attached

to e. Move to the “target vertex” vb. Continue this procedure at vb until vb is a final vertex

with no outgoing edges. This may be thought of as defining a path through the graph,

i.e. a connected sequence of vertices from v0 to a final vertex at level T . Note that all

so-generated haplotypes have the same length.

Browning and Browning [2] note that haplotype graph models as described above are

Hidden Markov Models (HMMs). Each edge corresponds to a state, and the transition
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probabilities between any two edges (va, vb) and (vc, vd) are 0 unless vc = vb. If vc = vb

then the transition probabilities are defined by the edge probability distribution at vb. In

a basic model, for a given state the emitted symbol (e.g. nucleotide) is just the symbol

associated with the corresponding edge.

The induced HMM so-described provides a haploid model for genetic data. The gen-

eralization for diploid data, based on two connected haploid HMMs and their combined

emission probabilities follows immediately, as described by Browning and Browning [2].

Informally, if the haploid model has n states mapping to level p in the haplotype graph,

the diploid model has n2 states at the same level, mapped to the set of ordered pairs

(k, r) (k ∈ {1..n}, r ∈ {1..n}). To be explicit, state (k, r) refers to the first of the two

connected haploid models being in state k, and the other one being in state r. In a ba-

sic emission probability distribution, (k, r) emits the unordered 2-tuple (genotype) of the

emission symbols associated with the haploid states k and r, and more complex emission

probability distributions follow from combining the respective haploid emission probability

distributions. The transition probability of (k, r) at level p to (k′, r′) at level p+ 1 is equal

to the product of the haploid transition probabilities from k to k′ and r to r′.

Note that at this point we can sample diploid (i.e., sequences g of T ordered geno-

types) and haploid (i.e., haplotypes h) data from the graph-equivalent HMMs: P(h |M →

HMM1) and P(g |M → HMM2) are both well-defined (M → HMM1 denotes the M -

equivalent haploid HMM, and M → HMM2 denotes the M -equivalent diploid HMM). If

we have observed haploid data h, we can use standard statistical techniques [3] to sample

a haplotype h′ (formed from concatenating the emission symbols of the edges associated

with the traversed states) from P(h′ |h,M → HMM1). Both h and h′ are haplotypes of

length T , so that this expression does not seem to be very useful. Now, suppose that h

was actually only typed at the loci specified by L′, and that all other loci carry a “missing

data” symbol EM . If we now modify the emission probability structure of M → HMM1

accordingly, for example by assigning each state the same probability to emit EM (we

say that this is an “agnostic” way to deal with missing data), we can use samples from

P(h′ |h,M → HMM1) to estimate symbols for the positions carrying an EM in h. This

property immediately translates to M → HMM2, the M -equivalent diploid HMM. That
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is, conditional on some genotype data g for an individual, with some of the positions po-

tentially being missing data, we can sample from P((h1, h2) | g,M → HMM2) ((h1, h2) is

a pair of two haplotypes, formed from concatenating the emission symbols of the pairs of

edges associated with the traversed states). If desired, by marginalizing over the respective

elements in (h1, h2), it is now possible to independently estimate the underlying genotype

of any of the loci in L loci conditional on M and g, including of course the loci L \ L′.

We have now described a (well-known, see [2]) solution to the second task: inference

of missing genotypes for an additional individual, conditional on some observed geno-

type data and a haplotype graph M . By specifying the emission probability structure

of M → HMM1 in a way that allows for emitting other symbols than EM or the state’s

underlying emission symbol, we introduce a mutation- or error-like effect (like [4]). For

all following applications, we define a graph sampling error parameter mS for the emis-

sion probability structure of haplotype graph-induced HMMs: conditional on not emitting

EM , the state’s underlying emission symbol (coming from the associated edge in M) is

emitted with probability 1−mS . With probability mS , one of the other members of the

locus-specific model alphabet is uniformly selected and emitted.

Constructing a haplotype graph

We now describe our algorithm to construct a haplotype graph model M from a set R of

individuals genotyped at T loci.

Note that the following description is conceptual – when actually implementing the

algorithm, we employ a couple of heuristics to reduce the computational effort (see Section

“Computational efficiency” for details).

Following [2], we employ an iterative strategy, with Zstop (the number of iterations)

usually set to 12:

1. Define a set H of temporary haplotypes and populate H with a number of samples

for each individual i in R. The samples are generated by drawing NS times from

a uniform probability distribution over all pairs of haplotypes which are compatible

(ignoring read error or mutation) with an individual’s genotypes GR,i, and each

haplotype pair is broken up into two separate haplotypes before insertion into H.
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Missing data in the genotypes is carried over to the haplotypes. Set Z := 1.

2. Construct a haplotype graph model M based on H, as described below.

3. SetH = {}. For each reference individual i, drawNS samples from P((h1, h2) |GR,i,M →

HMM2), and add h1 and h2 to H.

4. Invert each haplotype in H.

5. Set Z := Z + 1, terminate if Z > Zstop. Otherwise, go to step 2.

Our haplotype graph construction algorithm is a probabilistic generalization of the

works of Browning and Browning [2], which allows for uncertainty and missing data in the

set of estimated haplotypes H and a tailoring of the graph according to prior knowledge on

regional LD structure (“localization”). The aim is to infer an accurate and computationally

convenient haplotype graph model from the set of haplotypes H.

Suppose for a given number of levels T (corresponding to the lengths of the haplotypes

in the set H) we have the most general possible haplotype graph topology, i.e. a tree for

which every possible emission symbol has an edge at every vertex in the graph. Note

that at this stage there are no probabilities assigned. Each h ∈ H with no missing data

corresponds to a unique path through the graph topology, and we say that h is attached

to all vertices that the path passes through. However, we want to allow for missing data

in H, and we also want to take into account the possibility that an error process may have

modified the elements in H prior to observation. In the context of genetics, it is easy to

see why this makes sense. For example, a SNP genotyping error may lead to a haplotype

being present in H which does really not exist in the population.

We define a simple error process for the elements in H. We assume that this error

process acts independently on each character position and that, if an error occurs (with

probability mB), a new observed value is drawn from a uniform distribution over possible

alternative alleles at the affected position (this could, if desired, be easily generalized to

more complex error models). If we observe string h1 of length T , the likelihood that string

6



h2 is the true underlying string is

∏
p=0 .. T−1

[
Ih1(p)==h2(p) × (1−mB) + (1− Ih1(p)==h2(p))×

mB

|Ap| − 1

]
,

where we define Ih1(p)==h2(p) to be 1 if the p-th symbol of h1 is equal to the p-th symbol

of h2 and 0 otherwise. For simplicity, although mB may capture other effects than error,

we refer to mB as the graph building error probability. |Ap| is the number of available

symbols at haplotype position p (the size of the model alphabet at p).

If we observe missing data, we want to treat it in an agnostic way, i.e. assume equal

probabilities for each symbol in the model alphabet at the corresponding position.

We now probabilistically attach the haplotypes in H to the most general possible

haplotype graph topology for T levels (in our implementation, we actually prune the tree

as we move along the haplotypes – see Section “Computational efficiency” for details). For

each vertex, we introduce a list of probability-weighted potentially attached haplotypes.

At each level of the graph, the sum of attachment probabilities has to be 1 for each

haplotype. All haplotypes are attached to the root vertex with probability 1 by defining

the attachment probability PH(v0, h) := 1 for all h ∈ H; they are then distributed along

the graph according to our error model. That is, if haplotype h is attached to va at level

l(va) with probability y, and if the next observed haplotype symbol is s 6= EM , we have

the following attachment probabilities for the children vb of va at level l(va)+1: if the edge

(va, vb) carries the attached symbol s, the attachment probability of h at vb is y×(1−mB),

i.e. we define PH(vb, h) := PH(va, h) × (1 −mB). Otherwise, the attachment probability

is y × mB
|Al(va)|−1 , and we define PH(vb, h) := PH(va, h)× mB

|Al(va)|−1 . If s = EM , we attach h

in an agnostic manner, i.e. we define PH(vb, h) := PH(va, h)× 1
|Al(va)|

.

For notational convenience, let attached(v) denote the set of haplotypes attached to v

with attachment probability PH(v, h) > 0. To examine the structure of the graph topology

with attached haplotypes, for each vertex v, we define a function count(v, x). If x is the

empty string ′′, count(v, x) returns the expected number of haplotypes in H attached to

v:
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count(v,′′ ) =
∑

h∈attached(v)

PH(v, h)

If x is a string of length ≥ 1, count(v, x) returns the expected number of haplotypes

that continue with a specified suffix x of length len(x) ≥ 1 to the right-hand side of v. x

can be a partial or complete suffix, i.e. of length 1..[T − l(v)]:

count(v, x) =
∑

h∈attached(v)

(
PH(v, h)×

∏
p=[l(v)]..[l(v)+len(x)−1]

[
Ih(p)==x(p) × (1−mB)+

(1− Ih(p)==x(p))×
mB

Ap − 1

])
We complete the definition of a haplotype graph by specifying edge transition probab-

ilities. Define P(e|v) as the probability to follow edge e conditional on being at vertex v,

and let s denote the symbol that is attached to e. Then we set

P(e|v) := count(v, s)/count(v,′′ ) ,

Figure 1 in this document illustrates the effect of the described algorithm: instead of

taking one specified path through the graph topology, a haplotype’s probability “flows”

through the graph.

However, we observe i) that the resulting haplotype graph exhibits a considerable

topological complexity, if built from a reasonably sized set H, possibly leading to compu-

tational difficulties in later stages and ii) that the topology of the graph is still the most

general one. If we assume that H was actually sampled from a haplotype graph, and if

we want to recover the original graph’s underlying structure, we have to take into account

the possibility that the original graph’s structure may have been simpler, i.e. that one

vertex in the original graph corresponds to more than one vertex on the same level in the

current graph. Introducing a criterion of similarity that is based on comparing vertices’

conditional suffix distributions addresses both points. Informally speaking, vertices with

very similar suffix output distributions can be merged into one vertex to reduce computa-
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Figure 1: A: a non-probabilistic haplotype graph construction algorithm. Each haplotype
in the set H follows one defined path (orange) through the graph’s possible topology (or-
ange and gray branches), here depicted for H1 = AAA. Each node (red squares) carries a
list of attached haplotypes. B: the probabilistic haplotype graph construction algorithm
presented in this chapter. Each haplotype in the set H induces a probability distribu-
tion over possible paths through the graph, here pictured as orange lines. The width of
the lines indicates how probable a path is according to the path probability distribution
(not drawn to scale). At each node, the path follows the edge carrying the haplotype’s
next symbol with probability 1 − mB, and the remaining probability mass is split over
the remaining available edges. Each node carries a list of attached haplotypes with the
respective attachment probability. The figure is based on a path distribution for “AAA”,
with the graph-building error probability mB set to 0.1.

tional demands without substantially changing the model’s haplotype frequencies. Also, if

two vertices were actually identical or not distinguishable in an original haplotype graph

model, we would expect their suffix output distributions to be similar (see [5] for a formal

treatment).

We formalize the notion of similar suffix distributions following Ron et al. [5] and

Browning and Browning [2] by defining the function similar(va, vb) as the maximum

difference between the two conditional suffix probability distributions of va and vb:

similar(va, vb) := max
x∈Sva,vb

|PSuffix(va, x)− PSuffix(vb, x)| ,

where we define

PSuffix(v, x) := count(v, x)/count(v,′′ ) .

Sva,vb is defined as the set of possible suffixes originating from va or vb (partial or

complete). In order to accommodate the complex haplotype structure of the MHC, we
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include the edge label leading to a node as the first character of all suffixes.

We apply similar to all pairs of vertices (va, vb) at all levels to identify pairs of vertices

that can be merged. If similar(va, vb) < ε, two vertices are merged. We follow Browning

and Browning [2] in using a variance-based threshold:

ε := D ×
√
NS/2× (count(va,

′′ )−1 + count(vb,
′′ )−1)1/2 ,

where D is a scale parameter (usually 0.8 here, determined by initial experiments) and

NS is the number of haplotype pair samples from each individual.

To merge va and vb,

1. create a new vertex vc at the same level as va and vb

2. redirect all incoming edges of va and vb to vc, and for all h ∈ {attached(vb) ∪

attached(va)}, set PH(vc, h) := PH(vb, h) + PH(va, h)

3. attach all outgoing edges of vb and va to vc, and delete vb and va.

4. note that step 2 will result in a structure violating the haplotype graph assumptions,

as it will result in two edges (vc, vd) , (vc, vd′) with the same attached symbol. Merge

vd and vd′ as described for all such cases (i.e. recursively from step 1, if necessary),

and delete one of the two resulting edges leading to the new node replacing d and

d′.

5. finally, update P(e|v) for all modified vertices and compute the similar function for

vc and all other vertices on the same level.

Figure 2 in this document illustrates the process of merging nodes. For notational

convenience, we have assumed a fixed graph building error probability mB here for all

loci, but it is easy to see that this is not necessary.

Finally, we describe how to localize the graph construction process. Localization aims

at incorporating prior knowledge on patterns of long-range LD into the graph-building

process. Consider the following example to see why localization can be sensible. Suppose

that two haplotypes from H are attached to va: ’00A’ and ’11A’ (the allele identifiers

are arbitrary). Suppose further that a node vb on the same level has also two attached
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Figure 2: The essential steps of merging nodes in the probabilistic framework described
here. A: two haplotypes (AAA and ATA) have been attached to the topology shown in
Figure 1 in this document (the graph’s first level is not shown) with mB = 0.1. The
conditional suffix distributions of two nodes (pictured as blue squares) are identical and
the nodes will be merged. B: all outgoing edges from the two nodes have been attached
to one newly created joint node (blue square). The resulting structure is no haplotype
graph, because two edges emanating from the new node carry the same symbols as two
other edges emanating from the same node. C: The nodes that the conflicting edges lead
two are recursively merged, resulting in a haplotype graph structure.

haplotypes, ’00B’ and ’11B’. If we compare the conditional suffix distributions, we find no

difference for suffixes of length up to 2. For suffixes of length 3 and a small mB, we find

that the maximum difference is just below 0.5 (because none of the 3-character suffixes

present in one vertex is present in the other one). Depending on our choice of ε, we may

decide to merge the two vertices. The problem here is that the vertices actually exhibit

quite different patterns of LD to the third position – the maximum conditional probability

difference is almost 1. The localization element extends the function similar to take into

account such situations for a set SL of levels of predefined loci and could therefore prevent

merging the two vertices.

Define the indicator function Ih(p)==s to be 1 if haplotype h carries allele s at position

p, and 0 otherwise. We define

PLOCALIZE(v, s, p) :=∑
h∈attached(v) PH(v,h)×(Ih(p)==s×(1−mB)+(1−Ih(p)==s)× mB

|Ap|−1
)

count(v,′′) .

We note that this conditional probability integrates over the uncertainty in the inter-

mediate SNP genotypes and redefine the similar function to include all loci specified in

SL:
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similar(va, vb) := max {

maxx∈Sva,vb
|P(va, x)− P(vb, x)|,

max{p∈SL,s∈Ap} |PLOCALIZE(va, s, p)− PLOCALIZE(vb, s, p)|

} .

Figure 3 in this document illustrates the localization feature.

Figure 3: Localization at the example of an HLA locus. When comparing the conditional
HLA allele probabilities for two nodes (blue squares) for a particular HLA-A allele (marked
with an orange circle in the graph), the probabilities of all paths leading to this allele are
added up (separately for each node). Note that the two blue paths for the lower node
would count as two distinct suffixes without localization.

Computational efficiency

The algorithm we have described to build localized haplotype graphs from an uncertain set

of haplotypes requires substantial computational resources: to calculate the conditional

suffix distributions for each vertex, it is necessary to sum over all attached haplotypes with

attachment probability > 0. Haplotype attachment distributions of single haplotypes are

12



typically (depending on the uncertainty model and the number of alleles at the involved

loci) very skewed: a few vertices at any level usually account for most of the available

probability. Therefore, a threshold t is introduced: if PH(v, h) < t, PH(v, h) is set to 0 and

the removed probability mass is spread proportionally over all vertices with PH(v, h) ≥ t.

Also, when computing similar(va, vb) for two vertices, only such x ∈ Sva,vb that are

present in at least one of the haplotypes attached to va or vb are evaluated – suffixes x

merely induced by error processes on both vertices will carry smaller probabilities than

the original strings and therefore lead to a smaller absolute difference in probability.

HLA type inference

HLA loci are treated as multi-allelic SNPs, i.e. the observed HLA types are part of the hap-

lotype strings H and appear as edges in the haplotype graph. SNP- and HLA-genotyped

individuals can be used as input for the “iterative refinement” algorithm, without prior

phasing. Only individuals with at least one genotyped 4-digit HLA allele are used for

constructing the haplotype graph model, and 4- and 2-digit alleles are treated in the same

way, i.e. as unrelated, separate entities (4-digit resolution specifies the primary structure

of the classical HLA proteins, whereas 2-digit resolution refers to more general serological

properties of the alleles).

To account for the long-range LD structure of the MHC region, the graph building

algorithm is localized for all classical HLA loci but B and DRB1 (see below). Usually, we

set mB = mS .

Note that the results from step 3 of the model building algorithm can be used to quant-

itatively assess whether a lab-based HLA typing result in the reference dataset is consistent

with the graph or not; the posterior probabilities follow from summing over the haplo-

type samples. To minimize the impact of mis-typed HLA alleles in the reference panel,

after a specific number of graph-building and sampling iterations (usually 8), the number

of sampled haplotypes for a specific individual is weighted by the internally estimated

probability that the individual’s lab-based HLA type is consistent with the graph.

We build locus-specific HLA haplotype graphs for windows of a specified size each side

of the locus; 300 SNPs each side have been found to give good results. HLA type inference
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is carried out by sampling haplotype pairs from the diploid HMM, conditional on the

observed genotypes GI,i for each individual i in the inference dataset and the haplotype

graph: P((h1, h2) |GI,i,M → HMM2). This leads to posterior distributions over possible

pairs of HLA types that can be processed in an uncertainty-aware way or thresholded. To

call alleles, we first determine the most likely single allele for each individual and then the

most likely second allele, conditional on that individual carrying the first allele. We use

the marginal probability to observe the first allele (i.e. summed over all samples from the

haplotype pair distribution) as quality score (“allele-specific posterior probability”) for the

first allele and the joint probability for the first and the second allele as quality score for

the second allele.

Properties of the presented model and parameter inference

We have presented a generalized haplotype graph construction algorithm, related to the

BEAGLE algorithm [2] and earlier work in computational linguistics [5], which probabil-

istically attaches haplotypes to vertices while building the graph. We have introduced two

additional parameters: a graph building error parameter mB and the set of localization

loci SL that can be used to adapt graph construction to complex patterns of LD. Our

algorithm also allows for missing data.

We briefly discuss some properties of the generalized model:

• The error model we have introduced leads to a relative decline of the importance

of long-range haplotype differences in terms of collapsing vertices: |PSuffix(v1, x) −

PSuffix(v2, x)| is decreased for x with large differences. This depends on d, the scaling

parameter in the collapsing criterion, and mB, the error probability.

• We expect the generalized model to be potentially useful in other applications than

the one considered here. For example, if a haplotype graph is to be constructed for

a set of experimentally determined haplotypes (from single chromosome sequencing,

say), the uncertainty model for the graph-building step we have introduced can be

used to model read errors.

• The described algorithm can deal with missing data in the set of haplotypes in a
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straightforward way by defining a probability distribution on missing characters,

e.g. a uniform distribution. This property allows us not having to guess genotypes

for the first iteration of graph-building. Although the algorithm as described here

imputes missing genotypes in the reference panel during the first sampling process,

the missing data status could as well be preserved in the sampled haplotypes and

could be carried over to later stages. As the reference panels we are dealing with are

consistently typed on dense sets of markers, we have decided against this possibility

here. However, under other circumstances, for example when SNP coverage in the

reference panel varies strongly, not imputing missing SNP data may turn out to be

beneficial [6].

• Treating HLA alleles as multiallelic SNPs leads to a couple of useful properties in

learning and inference settings. The graph itself can reflect patterns of long-range

linkage disequilibrium between HLA alleles – HLA and SNP genotypes are used to

infer the graph structure in a combined manner, and there is no requirement that all

individuals be typed at the same set of HLA loci. Consider, for example, an inference

dataset with HLA-DRB1 -typed individuals, but lacking information for HLA-DQB1.

Providing the DRB1 genotypes as well as the SNP genotypes enables the model to

use partial HLA type information in inferring missing bits of the complete HLA type

(depending on the particular structure of the graph used for inference, of course).

Choosing optimal parameters for building haplotype graphs and for inference is an

important direction for further research. For the experiments presented in the main text,

we have used: mB = mS = 0.002, t = 0.001, NS = 50, D = 0.8 .

Although standard statistical techniques like Maximum Likelihood and Markov Chain

Monte Carlo could be applied in theory, the computational costs to do so seem prohib-

itive at the moment. In the context of this paper, our main purpose is statistical HLA

type imputation, and we measure the fit of model and parameterization by the validation

experiments presented in the main text. In order to justify the introduction of additional

parameters, we have repeated some of the experiments presented in Leslie et al. [7] and

Dilthey et al. [8]. We have used CEU HapMap data as a reference panel, constructed

haplotype graphs and imputed HLA types into a subset of the BC58 (all data exactly as
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described in our earlier papers). The results are summarized in Table S1. The column

“HLA*IMP:02” refers to the full model (with parameters adapted to accommodate the

much reduced panel size). In column I, the error probabilities for sampling from the graph

and for building the graph are set to 0 (all other parameters equal to the full model). In

column II, the error probability for building the graph is set to 0, and in column III, the

error probability for sampling from the graph is set to 0. We find that the full model

outperforms each of the reduced versions. In column IV, we have deactivated HLA local-

ization. Interestingly, the full model only yields better results at A and DQB1, whereas

the results at B and DRB1 are worse. This may relate to classical typing problems, po-

tentially associated with hypervariability (B) and nearby structural variation (DRB1 ),

or it may indicate that localization does not improve imputation accuracy. Until further

investigation, we deactivate localization for B and DRB1.
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