USER GUIDE

Zero Background™/Kan Cloning Kit

Zero Background[™] Cloning Kit with Selection on Kanamycin

Catalog number K2600-01

Revision date 23 March 2012 Publication part number 25-0154

MAN000037

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.

Contents

Experienced Users Guide	iv
Kit Contents and Storage	vi
Introduction	1
Product Overview	1
Methods	3
Clone into pZErO [®] -2	
Transformation	
Troubleshooting	
Appendix	15
Recipes	
Protocol for Chemically Competent Cells	
Protocol for Electrocompetent Cells	
pZErO [®] -2 Vector	
Accessory Products	
Technical Support	
Purchaser Notification	
References	

Experienced Users Guide

Introduction	The following procedure is designed to get experienced users quickly started with the Zero Background [™] /Kan Cloning Kit. The Introduction and Methods sections, along with appendices, provide detailed instructions for using the kit.						
Before starting	 Prepare LB plates containing 25–50 μg/mL kanamycin (see page 15). Store the plates at 4°C. If you are using a coll line that contains the <i>lac</i>I^q gape (i.e. TOP10E´, DH5αE´). 						
	include 1 mM IPTG in the plating medium to achieve complete induction.						
	2. Prepare LB or SOB liquid medium containing 25–50 μ g/mL kanamycin for DNA minipreps.						
	3. Prepare or purchase chemically competent or electrocompetent TOP10 cells. See pages 18–21 for protocols to prepare competent cells. The minimal efficiencies required are 1×10^8 cfu/µg DNA for chemically competent cells and 1×10^9 cfu/µg DNA for electrocompetent cells.						
	Note : For convenient high-efficiency transformation, we recommend One Shot [®] TOP10 Chemically Competent <i>E. coli</i> or One Shot [®] TOP10 Electrocompetent Cells, which are available separately (see page 24 for ordering information).						
	4. Determine a cloning strategy for ligating into pZErO [®] -2. See the detail of the multiple cloning site (page 4) for help.						
Ligate into pZErO [®] -2	Be sure to include a "no DNA", a "cells only", and linearized vector-only controls in your ligation experiments.						
	1. Digest 1 μ g each of pZErO [®] -2 supercoiled vector (1 μ L) and your DNA in total volumes of 10 μ L using the buffer, temperature, and reaction conditions recommended by the manufacturer of the restriction enzyme. Optimal digestion time is 15–30 minutes. DO NOT digest longer than 30 minutes .						
	2. Inactivate the restriction enzyme(s) by heating the reaction at 65°C for 10–20 minutes or by phenol extraction. Dilute the cut vector to 10 ng/μL with TE buffer (provided). If the enzyme is not heat inactivated (i.e. <i>Eco</i> R V), phenol-extract the enzyme.						
	3. Ethanol precipitate the DNA and resuspend it in 90 μL of sterile water or TE buffer. We recommend that you use the linearized DNA immediately. You may store the DNA at -20°C for 1–2 weeks but the cloning efficiency may decrease.						
	Procedure continued on the following page						

Experienced Users Guide, Continued

Ligate into	Procedure continued from previous page						
pZErO [©] -2, Continued	4. Prepare the ligation reaction. If ligating cohesive-ends, use a 2:1 ins molar ratio; if ligating blunt-ends, use an insert: vector molar ratio 3:1 and 10:1. See page 6 to determine how much insert you need. Se following 10 µL ligation reaction using the reagents supplied in the						
		Digested vector (~10 ng)	1 μL				
		Digested DNA insert	x μL				
		Sterile water	to 8.5 μL				
		10X Ligation Buffer (with ATP)	1 μL				
		<u>T4 DNA Ligase (4 U/µL)</u>	<u>0.5 μL</u>				
		Total Volume	10 μL				
	5.	Incubate the reaction at 16°C for 30 minutes (a 60 minutes (blunt-end ligations). Do not ligat 1 hour for ligation and do not add PEG to the background levels have been observed under Transformation .	cohesive-end ligations) or te at room temperature or exceed ligation reaction. Increased these conditions. Proceed to				
Transformation	For see	more information on chemical transformation pages 11–13.	or electroporation,				
	1. Add 2 μ L of each ligation reaction to a separate tube of competent cells (40–50 μ L) and transform using your method of choice.						
	2.	2. Plate 50–100 μ L of each transformation mix on Low Salt LB-kanamycin plates. Let the liquid absorb, invert the plate, and incubate it at 37°C for 18–24 hours. Proceed to Analyze Transformants .					
Analyze transformants	1.	Remove plates from the incubator. Pick at least transformants and inoculate into 2 mL Low Se 25–50 µg/mL kanamycin. Grow 6–8 hours or	st 10 kanamycin resistant alt SOB medium containing overnight at 37°C.				
	2.	Isolate the plasmid DNA by miniprep for rest Remember to purify the desired clone by strea reconfirm the presence of insert before makin	r restriction analysis or sequencing. streaking for single colonies and naking a glycerol stock.				
	3.	Prepare a glycerol stock of your desired clone combining 0.85 mL of an overnight bacterial of 100% glycerol. Mix by vortexing and transfer tube. Freeze the tube in liquid nitrogen or a d -70°C.	for long-term storage by culture with 0.15 mL of sterile the stock to a labeled storage ry ice/ethanol bath and store at				
	4.	After isolating the desired clone, proceed with analysis of your insert.	n further subcloning and/or				

Kit Contents and Storage

Kit Contents and
StorageThe Z
follow

The Zero Background[™]/Kan Cloning Kit is shipped on dry ice, and it contains the following reagents:

Item	Concentration	Storage
pZErO [®] -2 vector, supercoiled, 25 µg	$1 \ \mu g/\mu L$ in TE Buffer, pH 7.5	-30°C to -10°C
Sterile water, 1 mL	Nuclease-free water	−30°C to −10°C
10X Ligation Buffer, 100 μL	60 mM Tris-HCl, pH 7.5	-30°C to -10°C
	60 mM MgCl ₂	
	50 mM NaCl	
	1 mg/mL bovine serum albumin	
	70 mM β-mercaptoethanol	
	1 mM ATP	
	20 mM dithiothreitol	
	10 mM spermidine	
T4 DNA Ligase, 25 μL	4.0 Weiss units/μL	−30°C to −10°C
TE Buffer, 2 mL	10 mM Tris-HCl, pH 7.5	−30°C to −10°C
	1 mM EDTA	
Test Inserts, Blunt Ended ΦX174 Hae III DNA,	20 ng/µL in TE buffer, pH 7.5	−30°C to −10°C
10 μL		
TOP10 cells, 1 stab	—	2°C to 8°C

Genotype of TOP10	F- mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80lacZ Δ M15 Δ lacX74 recA1 araD139 Δ (ara-leu)7697 galU galK rpsL endA1 nupG						
Intended Use	For research use only. Not intended for any animal or human therapeutic or diagnostic use.						
Prepare TOP10 <i>E. coli</i> Glycerol Stocks	 We recommend that you prepare a set of TOP10 <i>E. coli</i> glycerol master stocks within two weeks of receiving the kit. To prepare 5–10 glycerol master stocks for long-term storage: Streak a small portion of the TOP10 cells that you have received as a stab on an LB plate. 						
	2. Invert the plate and incubate it at 37°C overnight.						
	3. Isolate a single colony and inoculate into 5–10 mL of LB medium. Grow the culture to stationary phase ($OD_{600} = 1-2$).						
	4. Mix 0.8 mL of the culture with 0.2 mL of sterile glycerol, and transfer to a cryovial.						
	5. Store the vials at –80°C. Use 1 master stock to create working stocks for regular use.						

Introduction

Product Overview

System Overview	This kit is designed to clone cohesive or blunt-ended DNA fragments with a low background of non-recombinants. The technology described here is based on vectors containing the lethal <i>E. coli</i> gene, <i>ccd</i> B (Bernard, <i>et al.</i> , 1994). The pZErO®-2 vector allows direct selection of inserts via disruption of a lethal gene. Very high cloning efficiencies (~95%) are often achieved without the need for exotic strains, X-Gal, calf intestinal phosphatase (CIP), or other components. <i>ccd</i> B, which inhibits growth of transformed cells containing non-disrupted <i>ccd</i> B, is constitutively expressed in cells that do not carry the <i>lac</i> I ^q gene.						
pZErO [®] -2 vector	The cloning vector, pZErO [®] -2, contains the <i>ccd</i> B gene fused to the C-terminus of LacZ α . Insertion of a DNA fragment disrupts expression of the <i>lacZα-ccd</i> B gene fusion permitting growth of only positive recombinants. Cells that contain non-recombinant vector are killed. The vector also contains:						
	• The kanamycin resistance gene for selection in <i>E. coli</i>						
	• The f1 origin of replication for single-strand rescue						
	• A versatile multiple cloning site with 17 unique sites						
	• Flanking Sp6 and T7 promoter/priming sites for <i>in vitro</i> transcription and sequencing						
	• All of the M13 universal primer sites for sequencing.						
Recommended <i>E. coli</i> host	<i>E. coli</i> TOP10 is the recommended host strain for pZErO [®] -2. Because this strain does not contain a <i>lacI</i> ^q gene, the <i>ccd</i> B gene will be constitutively expressed without the need for IPTG induction.						
	Strains that contain an F plasmid are not recommended for transformation and selection of recombinant clones. The F plasmid encodes the CcdA protein, which acts as an inhibitor of the CcdB protein (see page 2 for a more detailed explanation).						
	Any <i>E. coli</i> strain that contains the complete Tn5 transposable element (i.e. DH5 α F1Q TM , SURE, SURE2) encodes the kanamycin resistance gene. For the most efficient selection, we highly recommend that you choose an <i>E. coli</i> strain that does not contain the Tn5 gene (e.g. TOP10).						
	Do not use INV α F ['] cells. The transformation efficiency of INV α F ['] is very low using pZErO [®] -2 and selection on kanamycin.						

Product Overview, Continued

Mechanism of action of the CcdB protein	The CcdB protein acts by poisoning bacterial DNA-gyrase (topoisomerase II), an essential enzyme that catalyzes the ATP-dependent negative supercoiling of DNA. DNA gyrase acts by creating a transient double-strand nick in the DNA substrate, passing the DNA helix through the break to decrease the linking number, and then resealing the nick. During the breaking-resealing reaction, the 5' phosphate termini are covalently linked to a tyrosine residue in the A subunit of DNA gyrase (<i>gyr</i> A). This gyrase-DNA intermediate is called the cleavable complex. The CcdB protein has been shown both <i>in vivo</i> (Bernard and Couturier, 1992) and <i>in vitro</i> (Bernard, <i>et al.</i> , 1993) to poison the cleavable complex by inhibiting the resealing of the double-strand nick in the DNA. This causes DNA breakage, activation of the SOS response, and cell death.			
The <i>ccd</i> B gene	The <i>ccd</i> B gene is found in the <i>ccd</i> (<u>c</u> ontrol of <u>c</u> ell <u>d</u> eath) locus on the F plasmid. This locus contains two genes, <i>ccd</i> A and <i>ccd</i> B, which encode proteins of 72 and 101 amino acids respectively (Karoui, <i>et al.</i> , 1983; Ogura and Hiraga, 1983; and Miki, <i>et al.</i> , 1984). The <i>ccd</i> locus participates in stable maintenance of F plasmid by post-segregational killing of cells that do not contain the F plasmid (Jaffé, <i>et al.</i> , 1985). The CcdB protein is a potent cell-killing protein when its action is not inhibited by the CcdA protein. The half-life of the CcdA protein is shorter than that of the CcdB protein. Persistence of the CcdB protein leads to death of bacterial segregants that do not contain the F plasmid. Overexpression of the CcdB protein causes cell death when its action is not prevented by sufficient CcdA protein (Van Melderen, <i>et al.</i> , 1994).			

Methods

Clone into pZErO[®]-2

Introduction	Selecting cloned inserts using the Zero Background [™] technique is extremely powerful. However, because of the nature of selection, do not propagate the vector in common laboratory strains. We have developed ligation and transformation procedures to optimize the use of the pZErO [®] -2 vector provided in this kit. The kit contains enough vector for ~25 restriction digestions and ~2000 ligations.
Before starting	 Prepare LB plates containing 25–50 μg/mL kanamycin (see page 15). Store the plates at 4°C.
	If you are using cells that carry the <i>lacI^q</i> gene, include 1 mM IPTG in the plating medium to achieve complete induction.
	 Prepare LB or SOB medium containing 25–50 μg/mL kanamycin liquid medium for DNA minipreps.
	 Prepare or purchase chemically competent or electrocompetent TOP10 cells. See pages 18–21 for protocols to prepare competent cells; see page 24 for ordering information. The minimal efficiencies required are 1 × 10⁸ cfu/µg DNA for chemically competent cells and 1 × 10⁹ cfu/µg DNA for electrocompetent cells.
	4. Determine a cloning strategy for ligation into pZErO [®] -2. See the detail of the multiple cloning site (page 4) for help.
Q Important	The LacZ/CcdB fusion protein can be made nonlethal by minor changes in the peptide sequence within the multiple cloning site. Disruption of the LacZ/CcdB fusion protein can occur by frameshift, addition of stop codons, or by alterations in the fusion peptide sequence. We recommend the following precautions to avoid isolating non-recombinants:
	• Dephosphorylation of pZErO [®] -2 is not required or recommended.
	• Do not overdigest (more than 30 minutes) with restriction enzymes and take precautions to prevent nuclease contamination. Any problems with high background (self-ligation of the vector that produces colonies) are generally caused by low levels of exonuclease contamination in your restriction enzyme digest, ligation reaction, or the solution containing your insert. Use the buffers and water provided in the kit. If you need to use your own materials, all buffers and water used should be autoclaved extensively or boiled for 5–10 minutes in a microwave oven.
	 Exonuclease digestion of vector ends may cause a frameshift mutation resulting in disruption of the <i>lacZα-ccdB</i> gene if the vector self-ligates. This results in a high back-ground of non-recombinants. We recommend using the highest quality restriction enzymes for digesting pZErO[®]-2.

Clone into pZErO®-2, Continued

Detail of the
Multiple CloningThe following diagram shows the multiple cloning site and surrounding
sequences. Restriction sites are marked to indicate the cleavage site. Cloning into
the multiple cloning site disrupts expression of the *ccdB* gene.

							P _{la}	IC									_	
95	GCG	CAAC	GCA 2	ATTA	ATGT	GA GI	TAG	CTCA	с тси	ATTA	GGCA	ccco	CAGGO	СТТ	TACA	CTTT	ΑT	
															M13 R	everse	prime	· 🗌
155	GCT	CCGG	GCT (CGTA	IGTTO	GT GI	[GGA]	ATTG	r gag	GCGG	ATAA	CAA	TTC	ACA	CAGG	AAAC	AG C	T ATG
								Sp	6 prom	oter/pr	iming :	site					Nși l'	Met
220	ACC Thr	ATG Met	ATT Ile	ACG Thr	CCA Pro	AGC Ser	TAT Tyr	TTA Leu	GGT Gly	GAC Asp	ACT Thr	ATA Ile	GAA Glu	TAC Tyr	TCA Ser	AGC Ser	TAT Tyr	GCA Ala
	Hin	d III	Asp7	181 K	(pn IE	c/136 I		Bam	HI S	pe I							1	EcoRI
274	TCA Ser	'AGC Ser	TTG Leu	'GTA Val	C'CG Pro	AGC Ser	T'CG Ser	'GAT Asp	CCA Pro	'CTA Leu	GTA Val	ACG Thr	GCC Ala	GCC Ala	AGT Ser	GTG Val	CTG Leu	GAA Glu
			Psti E	coR V	,				Not I		Xho I				Nsi I *	Xba I	Dra I	I Apal
328	TTC	TGC	AGA	TAT	CCA	TCA	CAC	TGG	cĠĠ	CCG	стс	GAG	CAT	GCA	TCT	AGA	GGG	ccc
	Phe	Cys	Arg	Tyr	Pro	Ser	His	Trp	Arg	Pro	Leu	Glu	His	Ala_	Ser	Arg	Gly	Pro
			~~~			~ ~ ~						M13	(-20) F	-owar	d primi	ng site		
382	AAT Asn	Ser	Pro	TAT Tyr	Ser	GAG Glu	Ser	TAT	TAC Tyr	AAT Asn	Ser	Leu	GCC Ala	Val	Val	Leu	Gln	Arg
	M13	(-40) F	Toward	- I primir	na site			-	-			-						-
436	CGT	GAC	TGG	GAA	AAC	CCT	GGC	GTT	ACC	CAA	СТТ	аат	CGC	СТТ	GCA	GCA	САТ	CCC
	Arg	Asp	Trp	Glu	Asn	Pro	Gly	Val	Thr	Gln	Leu	Asn	Arg	Leu	Ala	Ala	His	Pro
490	ССТ	TTC	GCC	AGC	TGG	CGT	AAT	AGC	GAA	GAG	GCC	CGC	ACC	GAT	CGC	сст	тсс	CAA
	Pro	Phe	Ala	Ser	Trp	Arg	Asn	Ser	Glu	Glu	Ala	Arg	Thr	Asp	Arg	Pro	Ser	Gln
					La	cZα/co	dB Fu	ision jo	oint									
544	CAG Gln	TTG Leu	CGC Arg	AGC Ser	CTA Leu	TAC Tyr	GTA Val	CGG Arg	CAG Gln	TTT Phe	AAG Lys	GTT Val	TAC Tyr	ACC Thr	TAT Tyr	AAA Lys	AGA Arg	GAG Glu
598	AGC	CGT	ͲϪͲ	CGT	CTG	ጥጥጥ	GTG	GAT	GTA	CAG	AGT	GAT	ልጥጥ	ልጥጥ	GAC	ACG	CCG	GGG
000	Ser	Arg	Tyr	Arg	Leu	Phe	Val	Asp	Val	Gln	Ser	Asp	Ile	Ile	Asp	Thr	Pro	Gly
								ccd	BOR	F								
652	CGA Arg	CGG Arg	ATG Met	GTG Val	ATC Ile	CCC Pro	CTG Leu	GCC Ala	AGT Ser	GCA Ala	CGT Arg	CTG Leu	CTG Leu	TCA Ser	GAT Asp	AAA Lys	GTC Val	TCC Ser
706	CGT	GAA	CTT	TAC	CCG	GTG	GTG	CAT	ATC	GGG	GAT	GAA	AGC	TGG	CGC	ATG	ATG	ACC
	Arg	Glu	Leu	Tyr	Pro	Val	Val	His	Ile	Gly	Asp	Glu	Ser	Trp	Arg	Met	Met	Thr
760	ACC	GAT	ATG	GCC	AGT	GTG	CCG	GTC	TCC	GTT	ATC	GGG	GAA	GAA	GTG	GCT	GAT	CTC
	Thr	Asp	Met	ALA	ser	va⊥	Pro	vai	ser	va⊥	тте	θТΆ	GLU	GLU	val	A⊥a	Asp	Leu
814	AGC	CAC	CGC	GAA	AAT	GAC	ATC	AAA	AAC	GCC	ATT	AAC	CTG	ATG	TTC	TGG	GGA	ATA
	ser	HIS	Arg	GTU	ASN	Asp	тте	цуs	ASN	Ата	тте	ASN	теп	met	rne	тгр	σтΫ	тте
868	TAA	ATG	тса	GGC														

*The two Nsi I sites in the polylinker are the only Nsi I sites in the vector.

# Clone into pZErO[®]-2, Continued

Isolate and Purify inserts	For best results, phenol-extract PCR reactions and precipitate the DNA before ligating PCR products into pZErO [®] -2. If you gel-purify your insert before ligating into pZErO [®] -2, you may see a higher background of colonies without insert because of nucleases contamination. To reduce nuclease contamination, <b>do not</b> use communal ethidium bromide baths. Use solutions that are free of nucleases, and use high quality agarose.							
Ligate into pZErO [®] -2	<ul> <li>Be sure to include a "no cells", a "cells only", and linearized vector controls.</li> <li>Digest 1 μg each of pZErO[®]-2 supercoiled vector (1 μL) and your DNA in tot volumes of 10 μL for 15–30 minutes using the buffer, temperature, and reaction conditions recommended by the manufacturer of the restriction enzyme. DO NOT OVERDICEST</li> </ul>							
		To ligate blunt fragments, digest pZErO [®] -2 wit 15–30 minutes. Adjusting insert: vector quantit cohesive-end ligation and between 3:1 to 10:1 f increases ligation efficiency. Adjust digestion of	th 10–20 units of <i>Eco</i> R V for ties to a molar ratio of 2:1 for a for a blunt-end ligation quantities accordingly.					
	2.	For enzymes that are inactivated by heat, add 100 $\mu$ L and heat reaction to 70°C for 10 minute temperature, then place the reaction on ice. Th reaction will be 10 ng/ $\mu$ L.	TE buffer to a final volume of s, cool the reaction to room e final concentration of the					
		You may use the enzyme digestion directly in this procedure) unless the enzyme is not fully	the ligation reaction (step 5 of inactivated by heat					
		If the enzyme(s) are not fully inactivated by I <i>Pst</i> I), extract the digest with 10 $\mu$ L phenol/chl with 1/10 volume 3 M sodium acetate, pH 5.6, centrifuge; and carefully wash the pellet with 8 and resuspend in 90 $\mu$ L of TE buffer. Assuming concentration will be 10 ng/ $\mu$ L.	heat (e.g. <i>Bam</i> H I, <i>Eco</i> R V, <i>Kpn</i> I, loroform; precipitate the DNA, and 2 volumes 100% ethanol; 80% ethanol. Air dry the pellet g 90% recovery, the DNA					
	3.	To verify complete digestion and recovery, ele the digestion on a 1% agarose gel.	ctrophorese a 20 $\mu$ L aliquot of					
	4.	If you are ligating cohesive-ends, use 2:1 insert ligating blunt-ends, increase the insert: vector ± 10:1. See <b>Calculate molar ratios</b> on page 6 to d need. Set up the following 10 μL ligation react	t: vector molar ratio. If you are molar ratio to between 3:1 to etermine how much insert you ion using the supplied reagents:					
		Digested vector (~10 ng)	1 µL					
		Digested DNA insert	x μL					
		Sterile water to a final vo	olume of 8.5 μL					
		10X Ligation Buffer (with ATP)	1 μL					
		<u>T4 DNA Ligase (4 U/µL)</u>	<u>0.5 μL</u>					
		Total Volume	10 µL					
	5.	Incubate at 16°C for 30 minutes (cohesive-end end ligations). <b>Do not ligate at room temperat</b> to <b>Transformation</b> , page 8.	ligations) or 60 minutes (blunt- rure. Place vials on ice. Proceed					

# Clone into pZErO[®]-2, Continued

Calculate molar ratios	To clone your insert into pZErO [®] -2, you need to know the concentration of your insert DNA solution. Determine the concentration by OD ₂₆₀ , agarose gel electrophoresis, fluorescence, or with the Qubit [®] dsDNA Assay Kit (see page 24 for ordering information). Use the concentration to calculate the volume required to achieve a particular molar ratio of vector to insert.
	1. Determine the concentration of the insert in $\mu$ g/mL.
	2. Use the following formula to calculate the amount of insert needed to give a molar ratio of 2:1 between insert and linearized pZErO [®] -2. Note that the amount of pZErO [®] -2 is 10 ng.
	x ng insert = (2) (bp insert) (10 ng linearized $pZErO^{B}-2$ )
	(3297 bp pZErO®-2)
	<b>Note:</b> If you are performing a blunt-ended ligation, calculate the insert: vector molar ratio to be between 3:1 and 10:1 by replacing the 2 with the appropriate molar ratio in the preceding equation.
	3. Based on the calculation above, calculate the volumes needed for the ligation reaction.
General guidelines for control reactions	The following table gives some suggestions for possible control reactions for the experiments presented in this manual.

Experiment	Control	Reason
Ligation and Transformation	No DNA	Checks for contamination of ligation reagents.
	Linearized vector only	Checks for nuclease contamination in your reactions. A frameshift mutation will disrupt <i>ccdB</i> function, resulting in a high background of colonies that will not contain insert.
	Cells only	Checks for the presence of antibiotic in the plates and contamination of competent cells and SOC medium.
	Supercoiled vector (e.g. pUC19)	Checks the efficiency of the competent cells. See <b>Transformation</b> , page 8.
	Test Inserts	Checks general ligation conditions. Confirms disruption of <i>ccd</i> B expression. See page 7 for more information.

# Clone into pZErO[®]-2, Continued

Use the test inserts	Use the test inserts to check the general ligation conditions and to confirm the lack of <i>ccd</i> B function when its expression is disrupted. To use the test inserts, digest the pZErO [®] -2 vector with <i>Eco</i> R V, and ligate the test inserts ( <i>Hae</i> III digested $\Phi$ X174 DNA) into the vector. Tranform the ligation mixture into competent TOP10 cells, and plate the transformation mix onto LB-kanamycin plates.				
	1. Digest	1 μg of pZErO [®] -2 with <i>Eco</i> R V (10 ur	g of pZErO [®] -2 with <i>Eco</i> R V (10 units) for 15–30 minutes.		
	2. IMPOR	IMPORTANT! <i>EcoR</i> V is not heat inactivated.			
	Extract the aqu 2 volun	Extract digested vector with phenol/chloroform and precipitate the DNA in the aqueous layer with 1/10 volume 3 M sodium acetate pH 5.6 and 2 volumes of ethanol. Carefully wash the pellet with 80% ethanol and air dry.			
	3. Resusp	pend the DNA pellet in 90 μL TE buffer.			
	4. Set up t	he following 10 μL ligation reaction	:		
		Digested vector (~10 ng) Test inserts, blunt-ended ΦX174 DN Sterile water 10X ligation buffer <u>Γ4 DNA Ligase (4 U/μL)</u>	1 μL A (20 ng/μL) 1 μL 6.5 μL 1 μL 0.5 μL		
		Total Volume	10 µL		
	5. Set up a	a "vector only" ligation reaction:			
		Digested vector (~10 ng)	1 μL 7 5 ···Ι		
		10X ligation buffer	1.0 μL		
		$T4 DNA Ligase (4 U/\mu L)$	0.5 μL		
		Total Volume	10 µL		
	6. Incubat pages 8 plate 10	The the ligation reactions at 16°C for 1 -13. Use 2 $\mu$ L of the ligation reaction ) $\mu$ L of each transformation reaction.	hour. Proceed to <b>Transformation</b> , n to transform TOP10 cells and		
	The number of transformants per plate varies from 50–2000 colonies per 10 $\mu$ L using competent TOP10 cells. The cloning efficiency should be ~95%. Since neither the <i>Hae</i> III nor the <i>Eco</i> R V sites are regenerated, inserts may be released with <i>Nsi</i> I or a combination of other enzymes. Digestion of a recombinant plasmid will release one of 11 possible $\Phi$ X174 DNA fragments (bp): 72, 118, 194, 234, 271, 281, 310, 603, 872, 1078, or 1353. Note that tandem inserts may occur. This will not affect disruption of <i>ccdB</i> expression. $\Phi$ 174 DNA has no sites for <i>Apa</i> I, <i>Bam</i> H I, <i>Eco</i> R I, <i>Hind</i> III, <i>Kpn</i> I, <i>Not</i> I, <i>Nsi</i> I, <i>Spe</i> I, or <i>Xba</i> I.				
Determine cloning efficiency	To determine the test inset test insert li	ne the cloning efficiency, compare th ert ligation (10 μL plate) to the total r gation plate plus the number of colo	ne number of colonies produced in number of colonies seen on the 10 μL onies on the 10 μL vector only plate.		
<b>.</b> .	<i></i>	(colonies on test i	nsert plate)		
cloning	efficiency =	(colonies on test insert plate) + (co	lonies on vector only plate) x 100%		

#### Transformation

Introduction	After performing the cloning reaction, chemically transform or electroporate your pZErO [®] -2 construct into competent TOP10 <i>E. coli</i> , and plate the transformed cells onto LB-kanamycin plates (see <b>Recipes</b> , page 15). After incubating the plates for 24 hours, analyze kanamycin-resistant colonies by DNA miniprep and restriction mapping to find the desired clones. This section includes protocols to transform chemically competent or electrocompetent <i>E. coli</i> . For a high-efficiency and convenient transformation, we recommend One Shot [®] TOP10 Chemically Competent <i>E. coli</i> or One Shot [®] TOP10 Electrocompetent Cells, which are available separately (see page 24 for ordering information). For instructions on preparing chemically competent or electrocompetent or electrocompetent cells, see pages 18 and 20, respectively.
Controls	See the section on <b>Control Reactions</b> (page 6) to determine which controls to include.
General handling	Be extremely gentle when working with competent cells. Competent cells are highly sensitive to changes in temperature or mechanical lysis caused by pipetting. Transform the cells immediately after you thaw them on ice. Mix by stirring with a pipette tip, not by pipetting up and down.
<b>O</b> Important	If you are using cells that carry a <i>lac</i> I ^q gene, IPTG is required to induce expression from the <i>lac</i> promoter. Be sure to include IPTG in the agar medium at a final concentration of 1 mM. <b>Do not spread IPTG on the plate.</b>
	Continued on next page

Before starting	• If transforming by electroporation, you need:
	an electroporation device
	<ul> <li>sterile, glass transfer pipettes or pipette tips</li> </ul>
	<ul> <li>electroporation cuvettes (contact Technical Support for ordering information, page 25)</li> </ul>
	• sterile, 15-mL polypropylene snap-cap tubes
	SOC medium
	• Equilibrate a water bath to 42°C.
	• Warm one vial of SOC medium to room temperature.
	• Determine the total number of transformations, including controls. You need two LB-kanamycin plates per ligation/transformation. Place an appropriate number of 10-cm diameter LB-kanamycin agar plates in a 37°C incubator to remove excess moisture.
	• To test the transformation efficiencies of your cells, prepare a stock solution (10 pg/µL) of any supercoiled plasmid (e.g. pUC19, pBR322) to use as a control for transformation. Be sure to use appropriate antibiotic plates to test the transformation efficiency of your competent cells.
	• Obtain a test-tube rack (float) that will hold all transformation tubes to allow simultaneous heat shock in the water bath at 42°C.

One Shot [®] TOP10 chemical	1.	Centrifuge the vial(s) containing the ligation reaction(s) briefly and place on ice.
transformation	2.	Thaw, on ice, one 50 μL vial of One Shot [®] cells for each ligation/transformation.
	3.	Pipet 2 $\mu$ L of each ligation reaction directly into the competent cells, and mix by tapping gently. Use 1 $\mu$ L of diluted control plasmid for the transformation control. You can store the remaining ligation mixture(s) at -20°C.
	4.	Incubate the vial(s) on ice for 15 minutes.
	5.	Incubate the vial(s) for 30–45 seconds in the 42°C water bath (i.e. heat shock). Do not mix or shake.
	6.	Remove the vial(s) from the 42°C bath and quickly place them on ice for 1 minute.
	7.	Add 250 μL of pre-warmed SOC medium to each vial. (SOC is a rich medium; you must practice good sterile technique to avoid contamination.)
	8.	Place the vial(s) in a microcentrifuge rack on its side, and secure them with tape to avoid loss of the vial(s). Shake the vial(s) at 37°C for exactly 1 hour at 225 rpm in a shaking incubator.
	9.	Place the vial(s) with the transformed cells on ice.
	10.	Spread $10-50 \ \mu$ L from each transformation vial on separate, labeled LB-kanamycin agar plates. We recommend that you plate 2 different volumes to ensure well-spaced colonies. For plating smaller volumes, add 20 $\mu$ L SOC to ensure even spreading.
		<b>Note</b> : Plate the pUC19 control transformation on LB plates containing $50 \mu g/mL$ ampicillin.
	11.	Invert the plate(s) and incubate at 37°C overnight. Proceed to <b>Analyze Transformants</b> , page 13.

One Shot [®] electroporation	Use ONLY electrocompetent cells for electroporation to avoid arcing. Do not use the One Shot [®] TOP10 chemically competent cells for electroporation.
	1. Add 2 μL of the ligation reaction into a sterile microcentrifuge tube containing 50 μL of electrocompetent <i>E. coli</i> and mix gently. <b>Do not mix by pipetting up and down. Avoid formation of bubbles.</b> Transfer the cells to a 0.1-cm cuvette.
	2. Electroporate your samples using your own protocol and your electroporator.
	3. Immediately add 250 µL of room-temperature SOC Medium.
	4. Transfer the solution to a 15-mL snap-cap tube (e.g. Falcon [®] ) and shake the tube at 37°C for 1 hour.
	5. Spread $10-50 \ \mu$ L from each transformation on a pre-warmed selective plate and incubate overnight at 37°C. To ensure even spreading of small volumes, add 20 $\mu$ L of SOC Medium. We recommend that you plate 2 different volumes to ensure that at least 1 plate will have well-spaced colonies.
	6. Invert the plate(s) and incubate at 37°C overnight. Proceed to <b>Analyze Transformants</b> , page 13.
Chemical transformation	Use the following chemical transformation procedure if you have generated your own competent cells from the TOP10 <i>E. coli</i> provided as a stab with the kit. You may not have the same degree of transformation efficiency regularly attained when using One Shot [®] chemically competent cells; prepare additional SOC for this procedure (see <b>Recipes</b> , page 16).
	1. Equilibrate a water bath or heat block to 42°C. Remove the appropriate number of tubes of frozen TOP10 chemically competent cells (50 μL each) and thaw on ice.
	2. Add 2–5 μL of each ligation reaction to a separate tube of competent cells. Mix gently with the pipette tip. <b>Do not pipet up and down</b> . Repeat for all ligations
	<b>Note</b> : If the cell competency is less than $1 \times 10^8$ cfu/µg, you may need to use more of the ligation mixture.
	<ol> <li>For control reactions, add 1 μL (10 ng) of each supercoiled plasmid (e.g. pUC19) to a separate tube of cells.</li> </ol>
	4. Incubate all tubes on ice 20 minutes.
	5. Transfer all tubes to 42°C heat block or water bath and incubate for 1 minute, then place on ice for 1 minute.
	<ol> <li>Add 450 μL of room temperature SOC medium to each tube and shake at 225 rpm for 60 minutes at 37°C. Place on ice. Place the tubes horizontally in the shaker to maximize aeration, and secure them with tape.</li> </ol>
	<ol> <li>Plate 25 and 100 μL of each transformation mix on LB-kanamycin plates. Let all the liquid absorb into agar, invert the plate(s), and incubate at 37°C for 18–24 hours. Proceed to Analyze Transformants, page 13.</li> </ol>
	<b>Note</b> : If the cell competency is less than $1 \times 10^8$ cfu/µg, you may need to plate more of each transformation mix.

Electroporation	Note: Prepare additional SOC for this procedure (see Recipes, page 16).			
transformation	1.	Remove the appropriate number of microcentrifuge tubes of TOP10 electrocompetent cells from the –80°C freezer, and thaw the cells on ice. Chill the electroporation cuvettes on ice.		
	2.	Set up your electroporation device for electroporation of bacteria using the manufacturer's instructions.		
	3.	Dilute the ligation reaction with 10 $\mu$ L of sterile water and place at 65°C for 5 minutes.		
		<b>Note</b> : Ligation reactions are diluted to reduce the salt concentration. Excess salt may cause arcing during electroporation. Heating to 65°C inactivates the ligase.		
	4.	Add 2 $\mu L$ of the ligation reaction to each tube containing 80 $\mu L$ competent cells. Repeat for all ligation reactions.		
	5.	For the control reactions, add 1 $\mu$ L (10 ng) of each supercoiled plasmid (e.g. pUC19) to a separate tube of 40 $\mu$ L competent cells.		
	6.	Incubate all tubes on ice for 1 minute.		
	7.	Take one sample at a time and transfer the cell/DNA mix to an electroporation cuvette. Be sure not to trap air bubbles in the sample. Place the cuvette in the chamber, and discharge the electrical pulse.		
	8.	Remove the cuvette, and <b>immediately</b> add 450 µL of room temperature SOC medium into the cuvette. Transfer the contents of the cuvette to a 15-mL snap-cap polypropylene tube (Falcon 2059 or similar), and place the tube on ice.		
	9.	Repeat Steps 7–8 until all samples have been transferred to 15-mL tubes.		
	10.	Incubate the tubes with shaking (200–225 rpm) at 37°C for 60 minutes. Place the tubes horizontally in the shaker to maximize aeration, and secure them with tape.		
	11.	Plate 25 $\mu$ L and 100 $\mu$ L of the transformation mix on LB-kanamycin agar plates. After the liquid is absorbed into the agar, invert the plates, and incubate them at 37°C for 18–24 hours. Proceed to <b>Analyze Transformants</b> , page 13.		

#### Analyze transformants

- 1. Remove the plates from the incubator. Pick at least 10 kanamycin-resistant transformants and inoculate into 2 mL LB or SOB medium containing  $25-50 \mu g/mL$  kanamycin. Grow 6–8 hours or overnight at 37°C.
- 2. Isolate plasmid DNA by miniprep for restriction analysis. You may need to phenol-extract miniprep DNA to prevent smearing on agarose gels. Remember to isolate the desired clone by streaking for single colonies, and reconfirm the presence of insert before making a glycerol stock.
- 3. Prepare a glycerol stock of your desired clone for long-term storage by combining 0.85 mL of the mid-log bacterial culture with 0.15 mL of sterile 100% glycerol in a labeled cryovial. Mix the contents of the cryovial by vortexing, and freeze the tube in liquid nitrogen or a dry ice/ethanol bath. Store the glycerol stocks at -80°C.
- 4. After isolating the desired clone, you may proceed with further subcloning and/or analysis of your insert.



If you need ultra-pure plasmid DNA for automated or manual sequencing, we recommend using the PureLink[®] HQ Mini Plasmid Purification or PureLink[®] HiPure Plasmid Miniprep kits (see page 24 for ordering information). Refer to <u>www.lifetechnologies.com/support</u> or contact Technical Support (page 25) for more information on a large selection of plasmid purification columns.

#### Troubleshooting

Observation	Reason	Solution
Very few or no transformants arise	DNA is lost during precipitation	Use more DNA. Be careful not to lose the DNA pellet during the precipitation and wash steps.
	Insert not ligating properly	Check the subcloning strategy.
	Molar ratio of insert to vector is incorrect	Determine the concentration of insert and calculate the correct molar ratio.
	Transformation efficiency of <i>E. coli</i> strain is too low	Chemically competent cells should yield $\sim 1 \times 10^9$ transformants/µg DNA. Electrocompetent cells should yield >1 × 10 ⁹ transformants/µg DNA. Check transformation efficiency with a control vector.
High background of transformants that do not contain inserts	The vector is overdigested with restriction enzymes	Use the minimum amount of enzyme necessary to digest the vector. Limit digests to 15–30 minutes.
	If using cells that carry the <i>lac</i> I ⁹ gene, insufficient amount of IPTG in plate	IPTG must be in excess to achieve proper induction and cell death.
	Reagents are contaminated with nucleases	Use the reagents supplied with the kit or autoclave all reagents used for cloning (especially water).
Thin "lawn" of cells on plate	If using cells that carry the <i>lac</i> I ^q gene, plate contained insufficient amount of IPTG	Be sure to add the correct amount of IPTG to the plate medium. Let the medium cool sufficiently before adding IPTG. <b>Do not</b> spread IPTG onto plates.
	Insufficient amount of antibiotic is used in medium	Be sure to add the correct amount of antibiotic to the medium.
DNA migrates anomalously on agarose gels (bands run at a larger molecular weight than expected and seem slightly smeared)	Protein is bound to DNA	Extract the DNA with phenol/chloroform during plasmid preparation or use the PureLink [®] HQ Mini Plasmid Purification Kit (see page 24 for ordering information).

#### Appendix

Recipes	
Low Salt LB Agar Plates with Kanamycin	Low Salt LB Medium (per liter) 1% Tryptone 0.5% Yeast Extract 0.5% NaCl 1.5% Agar pH 7.5 <b>Note</b> : As the salt concentration of the medium decreases, the activity of aminoglycoside antibiotics (e.g. streptomycin, kanamycin) increases. You may find that 25 µg/mL kanamycin is sufficient to select transformants. Test your host
	<ol> <li>For 1 liter, dissolve 10 g tryptone, 5 g yeast extract, and 5 g NaCl in 950 mL</li> </ol>
	<ol> <li>Adjust the pH of the solution to 7.5 with 5 M NaOH, add 15 g agar, and bring the volume to 1 liter.</li> </ol>
	3. Autoclave for 20 minutes on liquid cycle.
	4. Let agar cool to ~55°C. Add kanamycin to a final concentration of $25-50 \ \mu g/mL$ .
	If using a cell line that carries the $lacI^{q}$ gene, add IPTG to a final concentration of 1 mM (1 mL/liter).
	5. Pour into 10-cm petri plates. Let the plates harden, then invert and store at 4°C. Plates containing kanamycin and IPTG are stable for 1–2 weeks.
Low Salt LB- Kanamycin Medium	<ul> <li>Low Salt LB Medium (per liter) 1% Tryptone</li> <li>0.5% Yeast Extract</li> <li>0.5% NaCl</li> <li>pH 7.5</li> <li>1. For 1 liter, dissolve 10 g tryptone, 5 g yeast extract, and 5 g NaCl in 950 mL deionized water.</li> <li>2. Adjust the pH of the solution to 7.5 with 5 M NaOH and bring the volume to 1 liter.</li> <li>3. Autoclave for 20 minutes on liquid cycle.</li> <li>4. Let solution cool to ~55°C. Add kanamycin to a final concentration of 25–50 µg/mL. Store the medium at 4°C.</li> </ul>

#### Recipes, Continued

SOB Medium	SOB (per liter) 2% Tryptone 0.5% Yeast Extract 0.05% NaCl 2.5 mM KCl 10 mM MgCl2			
	1. Dissolve 20 g tryptone, 5 g yeast extract, and 0.5 g NaCl in 950 mL deionized water.			
	<ol> <li>Make a 250 mM KCl solution by dissolving 1.86 g of KCl in 100 mL of deionized water. Add 10 mL of this stock KCl solution to the solution in step 1 of this procedure.</li> </ol>			
	3. Adjust pH to 7.5 with 5 M NaOH and add deionized water to 1 liter.			
	4. Autoclave this solution, cool to ~55°C, and add 10 mL of sterile 1 M MgCl ₂ and kanamycin, if desired.			
	5. Store at room temperature or 4°C. <b>Do not add IPTG.</b>			
SOC Medium	SOB Medium 20 mM glucose			
	1. Prepare and autoclave the SOB medium as described above.			
	<ol> <li>After autoclaving, cool the solution to ~55°C, and add 10 mL of sterile 1 M MgCl₂ and 7.2 mL of 50% glucose.</li> </ol>			
	3. Store at room temperature or 4°C.			

# Recipes, Continued

FSB Transformation Solution	10 mM potassium acetate, pH 7.5 45 mM MnCl2-4H2O 10 mM CaCl2-2H2O 100 mM KCl 3 mM hexaamminecobalt chloride (Contact Aldrich at 1-800-558-9160 to order) 10% glycerol			
	<ol> <li>Prepare 100 mL of 1 M potassium acetate by dissolving 9.82 g in 90 mL deionized water. Adjust pH to 7.5 with 2 M acetic acid. Bring the volume up t 100 mL.</li> </ol>			
	2.	For 100 mL o	of FSB transformation solution combine the following ingredients:	
		1 mL	1 M potassium acetate, pH 7.5	
		890 mg	MnCl ₂ -4H ₂ O	
		150 mg	CaCl ₂ -2H ₂ O	
		750 mg	KCl	
		80 mg	hexaamminecobalt chloride	
		10 mL	100% glycerol	
		80 mL	deionized water	
	3.	Carefully ad remake solu	just pH to 6.4 with 0.1 N HCl. If you go past the correct pH, tion. Do not readjust pH with base.	
	<ol> <li>Adjust the final volume to 100 mL with deionized water and filter sterilize. Store at 4°C.</li> </ol>			
DMSO	It is cell froz	s very importa s by chemical zen aliquots c	ant to use fresh, analytical grade DMSO. If you routinely transform I means using the method of Hanahan, 1983, you probably have of DMSO in your laboratory; if not, then follow this procedure:	
	1.	Order the sn	nallest amount of analytical grade DMSO.	
	2.	When the DI microcentrif or you may a you plan to p	MSO arrives, take 5–10 mL and aliquot 200–500 µL per uge tube. You may use the rest of the DMSO for other applications aliquot the remainder for competent cells. It depends on whether use the method described in this manual on a routine basis.	
	3.	Freeze these cells. Discarc <b>preparation</b>	tubes at –20°C and use one tube per preparation of competent d any remaining DMSO in the tube. <b>Use a fresh tube for every</b> <b>of competent cells.</b>	

#### **Protocol for Chemically Competent Cells**

Introduction	This following protocol describes how to make chemically competent cells for transformation with plasmid DNA (Hanahan, 1983). These cells are not a substitute for electrocompetent cells used for electroporation. To make chemically competent cells, grow the cells to mid-log phase, wash them with FSB solution, and treat them with DMSO. Freeze the competent cells in a dry ice/ethanol bath and stored at $-80^{\circ}$ C.		
Yield	This protocol will yield enough cells for about 60 transformations. The expected efficiency of chemically competent TOP10 cells is $1 \times 10^8$ cfu/µg supercoiled DNA. This is also the minimum efficiency needed to obtain 100–200 colonies per 100 µL transformation mix.		
	Sterile technique is absolutely essential to avoid contamination of the competent cells. Remember to use sterile solutions, medium, and supplies.		
Required solutions	<ul> <li>For each preparation, prepare the following solutions (see Recipes, pages 15–17):</li> <li>5 mL SOB medium in a sterile culture tube</li> <li>250 mL SOB in a sterile 500-mL or 1-liter culture flask</li> <li>FSB solution (~25 mL)</li> <li>Fresh, reagent grade DMSO</li> </ul>		
Protocol for Chemically Competent Cells	<ul> <li>Day 1:</li> <li>1. Streak TOP10 <i>E. coli</i> on an LB plate, invert the plate, and incubate at 37°C overnight.</li> <li>Day 2:</li> <li>2. Inoculate 5 mL of SOB medium in a sterile culture tube with one colony from the LB plate.</li> <li>3. Grow the cells overnight (12–16 hours) in a shaking incubator (200–225 rpm) at 37°C.</li> <li>Day 3:</li> <li>4. For each preparation, place the following items on ice or at 4°C. <ul> <li>Two 250-mL sterile centrifuge bottles</li> <li>Two 50-mL sterile centrifuge tubes</li> <li>Two 50-mL sterile pipettes</li> </ul> </li> <li>5. Inoculate 250 mL of fresh SOB medium in a 500-mL or 1-liter culture flask with 2.5 mL of the overnight culture.</li> <li>6. Grow the culture at 37°C at 200–225 rpm in a shaking incubator until the OD₅₅₀ reaches between 0.55–0.65 (2–3 hours).</li> </ul>		

Procedure continued on next page

#### Protocol for Chemically Competent Cells, Continued

Protocol for Chemically Competent Cells, Continued Day 3, Continued:

- 7. Divide the culture between the two cold (0–4°C), sterile 250-mL centrifuge bottles, and place on ice for 30 minutes.
- 8. Centrifuge the 250-mL bottles at  $2,000 \times g$  for 10-15 minutes at 0-4°C.
- 9. Decant the medium, and resuspend each pellet in 10 mL of cold (0–4°C) FSB solution. Transfer the resuspended cells to two cold, sterile, 50-mL centrifuge tubes. Incubate the tubes on ice for 15 minutes.
- 10. Centrifuge the tubes at  $2,000 \times \text{g}$  for 10-15 minutes at 0-4°C.
- 11. Decant the buffer, and resuspend each pellet in 1.8 mL cold FSB solution using a sterile 5-mL pipette.
- 12. While gently swirling the tubes, slowly add 65  $\mu$ L of DMSO drop by drop to each tube. Incubate the tubes on ice for 15 minutes.
- 13. While gently swirling the tubes, slowly add an additional 65  $\mu$ L of DMSO drop by drop to each tube.
- 14. Combine the cell suspensions from both tubes into one, and incubate the tube on ice for 15 minutes. Keep on ice.
- 15. Prepare a dry ice/ethanol bath.
- 16. For each preparation, place approximately sixty 1.5-mL microcentrifuge tubes on ice. Keep cell suspension on ice.
- 17. Pipette 50 µL of cell suspension into each tube.
- 18. As soon as all of the cell suspension is aliquoted, quick-freeze the tubes in the dry ice/ethanol bath and store at  $-80^{\circ}$ C.

#### **Protocol for Electrocompetent Cells**

Introduction	This procedure describes how to prepare cells for transformation with plasmid DNA by electroporation. The washing step in the protocol ensures that salts are removed from the cell solution to reduce the conductivity. High conductivity may result in arcing during electroporation. Use electrocompetent cells only for electroporation. <b>Do not</b> use them for any other transformation procedure.		
Yield	The following procedure will yield enough electrocompetent cells for about 30 transformations.		
Note	The expected efficiency of the electrocompetent TOP10 cells is $1 \times 10^9$ cfu/µg supercoiled DNA. This is the minimum efficiency needed to obtain 100–200 colonies per 100 µL of the transformation reaction.		
<b>O</b> Important	Sterile technique is absolutely essential to avoid contamination of the electrocompetent cells.		
Protocol for electrocompetent cells	<ul> <li>Day 1:</li> <li>1. Streak TOP10 <i>E. coli</i> on an LB plate, invert the plate, and incubate at 37°C overnight.</li> <li>2. Prepare the following solutions. Store the LB media at room temperature, and the glycerol solution and water at 4°C.</li> <li>50 mL LB medium in a 250-mL sterile culture flask</li> <li>1 liter of LB medium in a 2-liter or 4-liter sterile culture flask</li> <li>50 mL of sterile 10% glycerol</li> <li>1 liter of sterile water</li> <li>Day 2:</li> <li>3. Inoculate the 50 mL of LB medium in a 250-mL culture flask with a single colony from the LB plate and incubate at 37°C with shaking (200–225 rpm) for 12–16 hours (overnight).</li> <li>Day 3:</li> </ul>		
	<ul> <li>4. For each preparation, pre-chill on ice or at 4°C:</li> <li>Two sterile 500-mL centrifuge bottles</li> <li>Two sterile 50-mL centrifuge tubes</li> <li>Two sterile 25-mL pipettes</li> <li>One sterile 5-mL pipette</li> </ul> Procedure continued on next page		

# Protocol for Electrocompetent Cells, Continued

Protocol for electrocompetent cells, Continued	Day 3, Continued:		
	5.	Inoculate 1 liter of LB medium in a 2-liter or 4-liter flask with the 50 mL of overnight culture. Grow the 1 liter culture in a shaking incubator (200–225 rpm) at 37°C until the $OD_{550}$ is between 0.5–0.6 (approximately 2–3 hours).	
	6.	Transfer the 1-liter culture to the two chilled, sterile 500-mL centrifuge bottles, and incubate on ice for 30 minutes.	
	7.	Centrifuge the cultures at 2,000 × g for 15 minutes at 0–4°C. Keep the cell pellet, and decant the broth. Place the bottles back on ice.	
	8.	Resuspend the cell pellet in each bottle in approximately 500 mL of ice cold sterile water.	
	9.	Centrifuge cells at 2,000 $\times$ g for 15 minutes at 0–4°C. Keep the pellet, and decant the water. Place the bottles back on ice.	
	10.	Resuspend the cells in each bottle in approximately 250 mL of ice cold sterile water.	
	11.	Centrifuge cells at 2,000 $\times$ g for 15 minutes at 0–4°C. Decant the water and place the bottles back on ice.	
	12.	Using a pre-chilled sterile 25-mL pipette, resuspend the cells in each bottle in 20 mL of ice cold sterile 10% glycerol. Transfer each cell suspension to a chilled, sterile 50-mL centrifuge tube.	
	13.	Centrifuge the cells at $4,000 \times \text{g}$ for 15 minutes at $0-4$ °C. Decant the 10% glycerol, and place the tubes on ice.	
	14.	Resuspend each cell pellet in 1 mL of ice cold sterile 10% glycerol. Using a pre- chilled 5-mL pipette, pool the cells into one of the 50-mL tubes. Keep the tubes containing the cells on ice.	
	15.	Prepare a dry ice/ethanol bath.	
	16.	For each preparation, place thirty-five to forty 1.5-mL microcentrifuge tubes on ice, and pipet 40 $\mu$ L of the cell suspension into each tube. Keep the cell suspension and tubes on ice until you have aliquoted all of the cell solution.	
	17.	After you have aliquoted all of the cell solution, quick-freeze the tubes in the dry ice/ethanol bath. Store the electrocompetent cells at -80°C until ready for use.	

# pZErO[®]-2 Vector

Description of pZErO [®] -2	pZErO [®] -2 is a 3297 bp cloning vector that allows direct selection of positive recombinants via disruption of the lethal gene, <i>ccd</i> B. Expression of <i>ccd</i> B results in the death of cells containing non-recombinant vector. The product of the <i>ccd</i> B gene is expressed as a fusion protein to the LacZ $\alpha$ peptide fragment to exploit the proven disruption technology of LacZ $\alpha$ , and to include the M13 forward and reverse priming sites in the vector.				
Features of pZErO [®] -2	The important elements of pZErO [®] -2 are described in the following table. The pZErO [®] -2 vector has been completely sequenced and all features have been functionally tested.				
	Features	Function			
	Promoter ( $P_{lac}$ )	Allows inducible expression of $lacZ\alpha$ -ccdB gene fusion.			
	M13 Reverse priming site	Permits sequencing of your insert.			
	Sp6 promoter/priming site	Allows <i>in vitro</i> transcription of the sense strand and sequencing of your insert.			
	Multiple Cloning Site (17 unique sites)	Permits insertion of desired gene to disrupt expression of the <i>ccd</i> B gene.			
	$lacZ\alpha$ -ccdB fusion gene	• Provides lethal selection against non-recombinant vector.			
		<ul> <li>Uses the LacZα disruption technology to clone inserts.</li> </ul>			
		• Includes all the universal M13 forward and reverse priming sites for sequencing.			
	T7 promoter/priming site	Allows <i>in vitro</i> transcription of the anti-sense strand and sequencing of your insert.			
	M13 Forward (–20,–40) priming sites	Permit sequencing of your insert.			
	f1 origin	Allows isolation of single-stranded DNA from <i>E. coli</i> strains containing the F [′] .			
	Kanamycin resistance gene	Provides resistance to the antibiotic kanamycin. Derived from the bacterial transposon Tn5.			
	pUC origin	Allows high copy replication and maintenance of the plasmid in <i>E. coli</i> .			

#### pZErO[®]-2 Vector, Continued

# **Map of pZErO[®]-2** The following figure summarizes the features of the pZErO[®]-2 vector. The sequence is available from <u>www.lifetechnologies.com/support</u> or Technical Support (page 25). Details of the multiple cloning site are shown on page 4.



#### **Accessory Products**

Additional Products The following table lists additional products that may be used with the Zero Background[™]/Kan Cloning Kit. For more information, visit <u>www.lifetechnologies.com/support</u> or contact **Technical Support**, page 25.

Product	Quantity	Catalog no.
Platinum [®] Taq DNA Polymerase	100 reactions	10966-018
	250 reactions	10966-026
	500 reactions	10966-034
Taq DNA Polymerase, Recombinant	100 units	10342-053
	500 units	10342-020
PCR OpTimizer [™] Kit	100 reactions	K1220-01
PCR SuperMix High Fidelity	100 reactions	10790-020
One Shot [®] TOP10 Chemically Competent	10 reactions	C4040-10
Cells	20 reactions	C4040-03
One Shot [®] TOP10 Electrocompetent Cells	10 reactions	C4040-50
Electroporation Cuvettes, 0.1-cm	50 each	P410-50
Electroporation Cuvettes, 0.2-cm	50 each	P450-50
PureLink [®] HQ Mini Plasmid Purification Kit	100 preps	K2100-01
PureLink [®] HiPure Plasmid Miniprep Kit	25 preps	K2100-02
	100 preps	K2100-03
Kanamycin Sulfate	5 g	11815-024
	25 g	11815-032
Kanamycin Sulfate (100X), liquid	100 mL	15160-054
Qubit [®] dsDNA Assay Kit, High Sensitivity	500 assays	Q32854
Qubit [®] dsDNA Assay Kit, Broad-Range	500 assays	Q32853
Qubit [®] 2.0 Fluorometer	1 each	Q32866

#### **Technical Support**

Obtaining support	<ul> <li>For the latest services and support information for all locations, go to <u>www.lifetechnologies.com/support</u>.</li> <li>At the website, you can: <ul> <li>Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities</li> <li>Search through frequently asked questions (FAQs)</li> <li>Submit a question directly to Technical Support (<u>techsupport@lifetech.com</u>)</li> <li>Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents</li> <li>Obtain information about customer training</li> <li>Download software updates and patches</li> </ul> </li> </ul>
Safety Data Sheets (SDSs)	Safety Data Sheets (SDSs) are available at <u>www.lifetechnologies.com/support</u> .
Certificate of Analysis	The Certificate of Analysis provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on our website. Go to <u>www.lifetechnologies.com/support</u> and search for the Certificate of Analysis by product lot number, which is printed on the box.
Limited warranty	Life Technologies Corporation is committed to providing our customers with high- quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about a Life Technologies product or service, contact our Technical Support Representatives. All Life Technologies products are warranted to perform according to specifications stated on the certificate of analysis. The Company will replace, free of charge, any product that does not meet those specifications. <u>This warranty limits</u> the Company's liability to only the price of the product. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. The Company reserves the right to select the method(s) used to analyze a product unless the Company agrees to a specified method in writing prior to acceptance of the order. Life Technologies makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore the Company makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, report it to our Technical Support Representatives. Life Technologies Corporation shall have no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

#### **Purchaser Notification**

Limited Use Label License: Research Use Only	The purchase of this product conveys to the purchaser the limited, non-transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial services of any kind, including, without limitation, reporting the results of purchaser's activities for a fee or other form of consideration. For information on obtaining additional rights, please contact <u>outlicensing@lifetech.com</u> or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.
Limited Use Label License No. 54: <i>ccd</i> B-Fusion Vectors	ccdB selection technology is described in Bernard et al., "Positive Selection Vectors Using the F Plasmid ccdB Killer Gene" Gene 148 (1994) 71-74. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). For licensing information for use in other than research, please contact: Out Licensing, Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, California 92008; Phone (760) 603-7200 or e-mail <u>outlicensing@lifetech.com</u> .

- Bernard, P. and Couturier, M. (1992) Cell Killing by the F Plasmid CcdB Protein Involves Poisoning of DNA-Topoisomerase II Complexes. *J. Mol. Biol.* **226**: 735-745.
- Bernard, P., Kézdy, K. E., Van Melderen, L., Steyaert, J., Wyns, L., Pato, M. L., Higgins, P. N. and Couturier, M. (1993) The F Plasmid CcdB Protein Induces Efficient ATP-dependent DNA Cleavage by Gyrase. J. Mol. Biol. 234: 534-541.
- Bernard, P., Gabant, P., Bahassi, E. M., and Couturier, M. (1994) Positive Selection Vectors Using the F Plasmid *ccdB* Killer Gene. *Gene* **148**: 71-74.
- Hanahan, D. (1983) Studies on Transformation of Escherichia coli with Plasmids. J. Mol. Biol. 166: 557-580.
- Jaffé, A., Ogura, T., and Hiraga, S. (1985) Effects of the *ccd* Function of the F Plasmid on Bacterial Growth. *J. Bacteriol.* **163**: 841-849.
- Karoui, H., Bex, F., Drèze, P., and Couturier, M, (1983) *Ham22*, A Mini-F Mutation Which is Lethal to Host Cell and Promotes *rec*A-dependent Induction of Lambdoid Prophage. *EMBO J.* **2**: 1863-1868.
- Miki, T., Yoshioka, K., and Horiuchi, T. (1984) Control of Cell Division by Sex Factor F in *E. coli*. I. The 42.84-43.6 F Segment Couples Cell Division of the Host Bacteria with Replication of Plasmid DNA. *J. Mol. Biol.* **174**: 605-625.
- Ogura, T. and Hiraga, S. (1983) Mini-F Plasmid Gene that Couple Host Cell Division to Plasmid Proliferation. *Proc. Natl. Acad. Sci. USA* **80**: 4784-4788.
- Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*. Vol. Cold Spring Harbor Laboratory Press. Plainview, New York.
- Van Melderen, L., Bernard, P., and Couturier, M. (1994) Lon-dependent Proteolysis of CcdA is the Key Control for Activation of CcdB in Plasmid-free Segregant Bacteria. *Mol. Microbiol.* **11**: 1151-1157.

©2012 Life Technologies Corporation. All rights reserved.

The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.

Falcon is a registered trademark of Becton Dickinson and Company

#### Notes

