

pMIB/V5-His A, B, and C Vector Kit

For the Selection of Transfected Cells and Stable Expression of Secreted Heterologous Proteins in Lepidopteran Insect Cell Lines

Catalog no. V8030-01

Version E 29 December 2010 25-0356

User Manual

Table of Contents

Important Information	iv
Accessory Products	V
Introduction	1
Overview	1
Methods	3
Culturing Insect Cells	3
Cloning into pMIB/V5-His A, B, and C	4
Transforming E. coli	
Transient Expression in Insect Cells	
Selecting Stable Cell Lines	
Scale-Up and Purification	
Appendix	
Recipes	
pMIB/V5-His Map and Features	
pMIB/V5-His/CAT Map	
OpIE2 Promoter	
OpIE1 Promoter	
Blasticidin S	
Technical Service	
Purchaser Notification	
References	

Important Information

Shipping/Storage	The pMIB/V5-H –20°C.	Iis Vector Kit is shi	pped on wet ice. Upon rece	eipt, store the kit
Kit Contents	The following items are supplied with each pMIB/V5-His Vector Kit. Store at –20°C.			
	I	tem	Composition	Volume
	pMIB/V5-His A,	B, and C	20 µg each at 0.5 µg/µl, in T buffer, pH 8.0 (10 mM Tris-I 1 mM EDTA, pH 8.0)	
	pMIB/V5-His/C	CAT	20 μg at 0.5 μg/μl, in TE buf pH 8.0 (10 mM Tris-HCl, 1 r EDTA, pH 8.0)	
	OpIE2 Forward S	Sequencing Primer	Lyophilized in TE, pH 8.0	2 µg
	OpIE2 Reverse S	equencing Primer	Lyophilized in TE, pH 8.0	2 µg
Qualification Primer Sequences	www.invitrogen product lot num The sequence of	n.com/support and aber, which is print each primer is pro	vided below:	of Analysis by
	Primer		Sequence	pMoles Supplied
	OpIE2 Forward	5'-CGCAACGATC		329
	OpIE2 Reverse	5'-GACAATACAA	ACTAAGATTTAGTCAG-3′	250
Reagents Supplied by the User	experiments:		ents and equipment on han	d before starting
	-		lium (recommended)	
		lium (optional) Serum (FBS) (opti	onal)	
	 Fetal Bovine Serum (FBS) (optional) 1, 5, 10, and 25 ml sterile pipettes 			
	Cryovials			
		eter and Trypan B	lue (see recipe on page 22)	
	Table-top ce	entrifuge		
	• 60 mm tissu	e culture plates (ot	her flasks and plates may b	oe used)
	Sterile micro	ocentrifuge tubes (1	l.5 ml)	
	-	uffer (see recipe on	page 23)	
		ipe on page 23)		
	• •	inders (optional)		
	• 96-well plate	es (optional)		

Accessory Products

Introduction The products listed in this section are intended for use with the pMIB/V5-His Vector kit. For more information, refer to our World Wide Web site (www.invitrogen.com) or call Technical Service (see page 30).

Separately

Products Available The products listed below may be used with the pMIB/V5-His Vector Kit and are available separately from Invitrogen.

Product	Amount	Catalog no.
Sf9 Cells, frozen	1 ml vial, 1 x 10 ⁷ cells/ml	B825-01
Sf21 Cells, frozen	1 ml vial, 1 x 10 ⁷ cells/ml	B821-01
High Five [™] Cells, frozen	1 ml vial, 3 x 10 ⁶ cells/ml	B855-02
Grace's Insect Cell Culture Medium, Unsupplemented	500 ml	11595-030
Sf-900 II SFM	1 liter	10902-088
Express Five® SFM	1 liter	10486-025
PureLink [™] HQ Mini Plasmid Purification Kit	100 preps	K2100-01
Cellfectin [®] Reagent	1 ml	10362-010
Blasticidin S	50 mg	R210-01

Other InsectSelect[™] Kits

Several other kits that allow you to clone and stably express your gene of interest using the InsectSelect[™] technology are available from Invitrogen. These kits include InsectSelect[™] vectors with different antibiotic resistance genes. In addition, the pIZT/V5-His Vector Kit enables expression of a gene of interest and a cycle 3-GFP/Zeocin[™] fusion gene. This allows both visual monitoring of transfection efficiency and generation of a stable cell line. For more information about the various InsectSelect[™] vector kits available from Invitrogen, visit our World Wide Web site (www.invitrogen.com) or call Technical Service (see page 30). See the table below for ordering information.

Product	Catalog no.
pIB/V5-His TOPO® TA Expression Kit	K890-01
pIB/V5-His Vector Kit	V8020-01
pIZ/V5-His Vector Kit	V8000-01
pIZT/V5-His Vector Kit	V8010-01

Accessory Products, continued

Detection of	Expression of your recombi
Recombinant	to the appropriate epitope.
Proteins	detection of
	~

Expression of your recombinant fusion protein can be detected using an antibody to the appropriate epitope. The table below describes the antibodies available for detection of

C-terminal fusion proteins expressed using pMIB/V5-His. Horseradish peroxidase (HRP)-conjugated antibodies allow one-step detection using colorimetric or chemiluminescent detection methods.

Fifty microliters of each antibody is supplied which is sufficient for 25 Westerns.

Product	Epitope	Catalog no.
Anti-V5 Antibody	Detects 14 amino acid epitope	R960-25
Anti-V5-HRP Antibody	derived from the P and V	R961-25
Anti-V5-AP Antibody	proteins of the paramyxovirus, SV5 (Southern <i>et al.</i> , 1991)	R962-25
	GKPIPNPLLGLDST	
Anti-His (C-term) Antibody	Detects the C-terminal	R930-25
Anti-His(C-term)-HRP Antibody	polyhistidine (6xHis) tag (requires the free carboxyl group for detection (Lindner et al. 1997)	R931-25
Anti-His (C-term)-AP Antibody	for detection (Lindner <i>et al.,</i> 1997) HHHHHH-COOH	R932-25

Purification of Recombinant Protein

The metal binding domain encoded by the polyhistidine tag allows simple, easy purification of your recombinant protein by Immobilized Metal Affinity Chromatography (IMAC) using Invitrogen's ProBond[™] Resin (see below). To purify proteins expressed using the InsectSelect[™] System, the ProBond[™] Purification System or the ProBond[™] resin in bulk are available separately. See the table below for ordering information.

Product	Quantity	Catalog no.
ProBond [™] Metal-Binding Resin	50 ml	R801-01
(precharged resin provided as a 50% slurry in 20% ethanol)	150 ml	R801-15
ProBond [™] Purification System	6 purifications	K850-01
Purification Columns	50	R640-50
(10 ml polypropylene columns)		

Introduction

Overview	
Introduction	The InsectSelect [™] technology facilitates constitutive stable or transient expression of recombinant proteins in insect cell lines. pMIB/V5-His A, B, and C are 3.6 kb vectors that use the InsectSelect [™] technology to allow expression and secretion of your protein of interest in insect cell lines. The pMIB/V5-His vector contains the following features: • <i>OpIE2</i> promoter for high-level, constitutive expression of the gene of interest
	 (Theilmann and Stewart, 1992) Honeybee melittin secretion signal (HBM) for directing secreted expression of the gene of interest (Tessier <i>et al.</i>, 1991)
	• <i>OpIE1</i> promoter for expression of the blasticidin resistance gene (see next bullet) (Theilmann and Stewart, 1991)
	• Blasticidin resistance gene for selection of stable cell lines (Takeuchi <i>et al.,</i> 1958; Yamaguchi <i>et al.,</i> 1965)
	• EM7 promoter for expression of ampicillin and blasticidin resistance in <i>E. coli</i>
	 Ampicillin resistance gene for selection of transformants in <i>E. coli</i> C-terminal peptide containing the V5 epitope and 6xHis tag for detection and purification of your protein of interest (if desired) Three reading frames to facilitate in-frame cloning with the C-terminal peptide
	The control plasmid, pMIB/V5-His/CAT, is included for use as a positive control for expression and secretion.
Description of System	The gene of interest is cloned into pMIB/V5-His and transfected into Sf9 or High Five [™] cells using lipid-mediated transfection. After transfection, cells can be assayed for secreted expression of the gene of interest. Once you have confirmed that your gene expresses, you can select for a stable polyclonal population or stable clonal cell lines using blasticidin as a selection agent. Stable cell lines can be used to express the protein of interest in either adherent culture or suspension culture.
Description of Promoters	Baculovirus immediate-early promoters utilize the host cell transcription machinery and do not require viral factors for activation. Both the <i>OpIE2</i> and <i>OpIE1</i> promoters are from the baculovirus <i>Orgyia pseudotsugata</i> multicapsid nuclear polyhedrosis virus (<i>OpMNPV</i>). The virus' natural host is the Douglas fir tussock moth; however, the promoters allow protein expression in <i>Lymantria dispar</i> (LD652Y), <i>Spodoptera frugiperda</i> cells (Sf9) (Hegedus <i>et al.</i> , 1998; Pfeifer <i>et al.</i> , 1997), Sf21 (Invitrogen), <i>Trichoplusia ni</i> (High Five TM) (Invitrogen), <i>Drosophila</i> (Kc1, S2) (Hegedus <i>et al.</i> , 1998; Pfeifer <i>et al.</i> , 1997), and mosquito cell lines (unpublished data). The <i>OpIE2</i> promoter has been shown to be about 5- to 10-fold stronger than the <i>OpIE1</i> promoter (Pfeifer <i>et al.</i> , 1997). Both promoters have been sequenced and analyzed. For more detailed information on the <i>OpIE2</i> and <i>OpIE1</i> promoters, see page 27 and page 28, respectively.

Overview, continued

Expression Levels	altho from prote bacu from	<i>OpIE2</i> promoter provides relatively high levels of constitutive exprough not all proteins will be expressed at levels equivalent to those baculovirus very late promoters (<i>e.g.</i> polyhedrin or p10). However, eins may be expressed more efficiently in the InsectSelect TM System flovirus systems (Jarvis <i>et al.</i> , 1996). To date, reported expression level $1-2$ g/ml (human IL-6; Invitrogen) to 8–10 g/ml (human notransferrin) (Hegedus <i>et al.</i> , 1999).	obtained r, other than in
Blasticidin Resistance	grised euka confe from 1991	Blasticidin S HCl is a nucleoside antibiotic isolated from <i>Streptomyces griseochromogenes</i> which inhibits protein synthesis in both prokaryotic and eukaryotic cells (Takeuchi <i>et al.</i> , 1958; Yamaguchi <i>et al.</i> , 1965). Resistance is conferred by expression of either one of two blasticidin S deaminase genes: <i>BSD</i> from <i>Aspergillus terreus</i> (Kimura <i>et al.</i> , 1994) or <i>bsr</i> from <i>Bacillus cereus</i> (Izumi <i>et al.</i> , 1991). These deaminases convert blasticidin S to a non-toxic deaminohydroxy (Kimura and Yamaguchi, 1996; Yamaguchi <i>et al.</i> , 1975).	
Experimental Outline	gene how This	Table below describes the general steps needed to clone and express of interest. For more details, refer to the pages indicated. Informati to culture insect cell lines may be found in our Insect Cell Lines ma manual may be downloaded from our Web site (www.invitrogen.c	ion on inual. com).
	Ste	Action	Ροσο
			Page
	p 1	Establish culture of Sf9, Sf21, or High Five [™] cells.	3
	p		
	p 1	Establish culture of Sf9, Sf21, or High Five [™] cells. Develop a cloning strategy to ligate your gene of interest into pMIB/V5-His A, B, or C in frame with the honeybee melittin secretion signal and the C-terminal peptide encoding the V5	3
	p 1 2	Establish culture of Sf9, Sf21, or High Five [™] cells. Develop a cloning strategy to ligate your gene of interest into pMIB/V5-His A, B, or C in frame with the honeybee melittin secretion signal and the C-terminal peptide encoding the V5 epitope and the polyhistidine (6xHis) tag (if desired). Transform your ligation reactions into a <i>recA</i> , <i>endA E. coli</i> strain (<i>e.g.</i> TOP10). Select on LB plates containing 50–100 µg/ml	3 4-7
	p 1 2 3	Establish culture of Sf9, Sf21, or High Five [™] cells. Develop a cloning strategy to ligate your gene of interest into pMIB/V5-His A, B, or C in frame with the honeybee melittin secretion signal and the C-terminal peptide encoding the V5 epitope and the polyhistidine (6xHis) tag (if desired). Transform your ligation reactions into a <i>recA</i> , <i>endA E</i> . <i>coli</i> strain (<i>e.g.</i> TOP10). Select on LB plates containing 50–100 µg/ml ampicillin or 100 µg/ml blasticidin in Low Salt LB. Use sequencing to confirm that your protein is cloned in frame with the honeybee melittin secretion signal and the C-terminal	3 4-7 8
	p 1 2 3 4	 Establish culture of Sf9, Sf21, or High Five[™] cells. Develop a cloning strategy to ligate your gene of interest into pMIB/V5-His A, B, or C in frame with the honeybee melittin secretion signal and the C-terminal peptide encoding the V5 epitope and the polyhistidine (6xHis) tag (if desired). Transform your ligation reactions into a <i>recA</i>, <i>endA E. coli</i> strain (<i>e.g.</i> TOP10). Select on LB plates containing 50–100 µg/ml ampicillin or 100 µg/ml blasticidin in Low Salt LB. Use sequencing to confirm that your protein is cloned in frame with the honeybee melittin secretion signal and the C-terminal peptide (if desired). 	3 4-7 8 8
	p 1 2 3 4 5	 Establish culture of Sf9, Sf21, or High Five[™] cells. Develop a cloning strategy to ligate your gene of interest into pMIB/V5-His A, B, or C in frame with the honeybee melittin secretion signal and the C-terminal peptide encoding the V5 epitope and the polyhistidine (6xHis) tag (if desired). Transform your ligation reactions into a <i>recA</i>, <i>endA E</i>. <i>coli</i> strain (<i>e.g.</i> TOP10). Select on LB plates containing 50–100 µg/ml ampicillin or 100 µg/ml blasticidin in Low Salt LB. Use sequencing to confirm that your protein is cloned in frame with the honeybee melittin secretion signal and the C-terminal peptide (if desired). Transfect Sf9, Sf21, or High Five[™] cells. 	3 4-7 8 8 10-12
	p 1 2 3 4 5 6	 Establish culture of Sf9, Sf21, or High Five[™] cells. Develop a cloning strategy to ligate your gene of interest into pMIB/V5-His A, B, or C in frame with the honeybee melittin secretion signal and the C-terminal peptide encoding the V5 epitope and the polyhistidine (6xHis) tag (if desired). Transform your ligation reactions into a <i>recA</i>, <i>endA E</i>. <i>coli</i> strain (<i>e.g.</i> TOP10). Select on LB plates containing 50–100 µg/ml ampicillin or 100 µg/ml blasticidin in Low Salt LB. Use sequencing to confirm that your protein is cloned in frame with the honeybee melittin secretion signal and the C-terminal peptide (if desired). Transfect Sf9, Sf21, or High Five[™] cells. Assay for transient expression of your protein. Create stable cell lines expressing the protein of interest by 	3 4-7 8 8 10-12 12-14

Methods

Culturing Insect Cells

Introduction	Before you start your cloning experiments, be sure to have cell cultures of Sf9, Sf21, or High Five [™] cells growing and have frozen master stocks available.
Cells for Transfection	You will need log-phase cells with >95% viability to perform a successful transfection. Review pages 10-12 to determine how many cells you will need for transfection.
Insect Cell Lines Manual	For additional information on insect cell culture, refer to the Insect Cell Lines manual. This manual contains information on:
	Thawing frozen cells
	Maintaining and passaging cells
	Freezing cells
	Using serum-free medium
	Growing cells in suspension
	Scaling up cell culture
	This manual is available from our Web site (www.invitrogen.com) or by contacting Technical Service (see page 30).

Cloning into pMIB/V5-His A, B, and C

Introduction	The pMIB/V5-His kit supplies vectors with multiple cloning sites in three reframes (A, B, and C) to facilitate cloning your gene of interest in frame with terminal peptide containing the V5 epitope and a polyhistidine (6xHis) tag. the diagrams provided on pages 5-7 to design a strategy to clone your gene interest in frame with the HBM secretion signal and the C-terminal peptide.		
General Molecular Biology Techniques	For help with <i>E. coli</i> transformations, DNA ligations, restriction enzyme analysis, DNA sequencing, and DNA biochemistry, refer to <i>Molecular Cloning: A Laboratory Manual</i> (Sambrook <i>et al.</i> , 1989) or <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994).		
Propagation and Maintenance of Plasmids	The pMIB/V5-His A, B, C, and pMIB/V5-His/CAT vectors contain the ampicillin and blasticidin resistance genes to allow selection of the plasmid in <i>E. coli</i> using ampicillin or blasticidin, respectively. To propagate and maintain the pMIB/V5-His and pMIB/V5-His/CAT plasmids, we recommend using the following procedure: 1. Use 10 ng of each vector to transform a <i>recA</i> , <i>endA E. coli</i> strain like TOP10,		
	 Ose folgof each vector to transform a <i>recA</i>, <i>entrA L</i>. <i>con</i> strain like FOF 16, DH5 , JM109, or equivalent (see page 8 for more information). Select transformants on LB agar plates containing 50–100 μg/ml ampicillin or Low Salt LB agar plates containing 100 μg/ml blasticidin (see recipe page 22). Prepare a glycerol stock from each transformant containing plasmid for long-term storage (see page 9). 		
Cloning Considerations	pMIB/V5-His is a terminal fusion vector. To express your gene as a recombinant fusion protein, you must clone your gene in frame with the N-terminal HBM secretion signal. If you wish to include the C-terminal peptide for detection with either the V5 or His(C-term) antibodies or purification using the polyhistidine (6xHis) tag, you must also clone your gene in frame with the C-terminal peptide. The vector is supplied in three reading frames to facilitate cloning. Refer to the diagrams on pages 5-7 to develop a cloning strategy. Be sure that your gene does not contain a stop codon upstream of the C-terminal peptide .		
	If you do not wish to include the C-terminal peptide, include the native stop codon for your gene of interest.		
Signal Sequence Processing	The HBM secretion signal is processed from your recombinant protein by a signal peptidase-directed cleavage after alanine21 in the signal sequence (Tessier <i>et al.</i> , 1991). For the location of the melittin cleavage site, refer to the diagrams on pages 5-7. Note that you will not obtain native protein following cleavage of the signal sequence because of the intervening sequences between the melittin cleavage site and the restriction site of interest in the multiple cloning site (see diagrams on pages 5-7). For example, your recombinant protein will contain at least two extra amino acids following cleavage of the secretion signal if you clone your gene into the <i>Sph</i> I site.		

Cloning into pMIB/V5-His A, B, and C, continued

Multiple Site of p His A	•	Below is the multiple cloning site for pMIB/V5-His A. The TATA box, start of transcription, and the polyadenylation signal are marked as described in Theilmann and Stewart, 1992. Restriction sites are labeled to indicate the actual cleavage site. The boxed nucleotides indicate the variable region. The multiple cloning site has been confirmed by sequencing and functional testing. The complete sequence of pMIB/V5-His A is available for downloading from our World Wide Web site (www.invitrogen.com) or from Technical Service (see page 30). For a map and a description of the features of pMIB/V5-His A, refer to pages 24-25.
491		Start of transcription TATA Box OplE2 Forward priming site AT AAATACAGCC CGCAACGATC TGGTAAACAC AGTTGAACAG CATCTGTTCG AATTTAAAGC
		Honeybee melittin secretion signal
561		AAA TTC TTA GTC AAC GTT GCC CTT GTT TTT ATG GTC GTA TAC ATT TCT Lys Phe Leu Val Asn Val Ala Leu Val Phe Met Val Val Tyr Ile Ser
616	TAC ATC T Tyr Ile 1	Melittin Cleavage
	E	Site CoR V Not I Xho I Xba I
681	TCTGCAGA	IA TCCAGCACAG TGGCGGCCGC TCGAG <mark>TCTAG AGGGCCC</mark> TTC GAA GGT AAG CCT ATC Gly Lys Pro Ile
		V5 epitope Polyhistidine (6xHis) region
746		CCT CTC CTC GGT CTC GAT TCT ACG CGT ACC GGT CAT CAT CAC CAT CAC Pro Leu Leu Gly Leu Asp Ser Thr Arg Thr Gly His His His His His
		OpIE2 Reverse priming site
800	CAT TGA (His ***	GTTTA TCTGACTAAA TCTTAGTTTG TATTGTCATG TTTTAATACA ATATGTTATG
		OpIE2 polyadenylation signal
861	ͲͲͲϪϪϪͲϪ·	CG TTTTTAATAA ATTTTATAAA ATAATTTCAA CTTTTATTGT AACAACATTG TCCATTTACA
		3' untranslated region of OpIE2
931	САСТССТТ	IC AAGCGCGTGG GATCGATGCT

Cloning into pMIB/V5-His A, B, and C, continued

	e Cloning pMIB/V5-	Below is the multiple cloning site for pMIB/V5-His B. The TATA box, start of transcription, and the polyadenylation signal are marked as described in Theilmann and Stewart, 1992. Restriction sites are labeled to indicate the actual cleavage site. The boxed nucleotides indicate the variable region. The multiple cloning site has been confirmed by sequencing and functional testing. The complete sequence of pMIB/V5-His B is available for downloading from our World Wide Web site (www.invitrogen.com) or from Technical Service (see page 30). For a map and a description of the features of pMIB/V5-His B, refer to pages 24-25.
		Start of transcription
	TAT	A Box OpIE2 Forward priming site
491	TCGCGCCTAT	AAATACAGCC CGCAACGATC TGGTAAACAC AGTTGAACAG CATCTGTTCG AATTTAAAGC
F.C.1		Honeybee melittin secretion signal
561		AA TTC TTA GTC AAC GTT GCC CTT GTT TTT ATG GTC GTA TAC ATT TCT ys Phe Leu Val Asn Val Ala Leu Val Phe Met Val Val Tyr Ile Ser
	1100 11	b me bea var nom var ma bea var me nee var var fyr me ber
616		Sph Hind III Asp718 Kpn Sac BamH Spe EcoR C GCC GGC ATGCTAAGCT TGGTACCGAG CTCGGATCCA CTAGTCCAGT GTGGTGGAAT
	Tyr Ile Tyr	
		Melittin Cleavage
	EcoR	Site V Not I Xho I Xba I Sac II
681	TCTGCAGATA	TCCAGCACAG TGGCGGCCGC TCGAGTCTAG AGGGCCCGCG GTTCGAA GGT AAG CCT
		Gly Lys Pro
		V5 epitope Polyhistidine (6xHis) region
747		C CCT CTC CTC GGT CTC GAT TCT ACG CGT ACC GGT CAT CAT CAC CAT n Pro Leu Leu Gly Leu Asp Ser Thr Arg Thr Gly His His His His
	IIE FIO ASI	I FIO Ded Ded GIY Ded ASP Set THE ALG THE GIY HIS HIS HIS HIS
		OpIE2 Reverse priming site
801	CAC CAT TGA	G TTTATCTGAC TAAATCTTAG TTTGTATTGT CATGTTTTAA TACAATATGT
	His His **	
		OpIE2 polyadenylation signal
861	TATGTTTAAA	TATGTTTTTA ATAAATTTTA TAAAATAATT TCAACTTTTA TTGTAACAAC ATTGTCCATT
		3' untranslated region of OpIE2

931 TACACACTCC TTTCAAGCGC GTGGGATCGA TGCTCACTCA

Cloning into pMIB/V5-His A, B, and C, continued

Multiple Cloning Site of pMIB/V5- His C		Below is the multiple cloning site for pMIB/V5-His C. The TATA box, start of transcription, and the polyadenylation signal are marked as described in Theilmann and Stewart, 1992. Restriction sites are labeled to indicate the actual cleavage site. The boxed nucleotides indicate the variable region. The multiple cloning site has been confirmed by sequencing and functional testing. The complete sequence of pMIB/V5-His C is available for downloading from our World Wide Web site (www.invitrogen.com) or from Technical Service (see page 30). For a map and a description of the features of pMIB/V5-His C, refer to pages 24-25.	
	T 4 T	Start of transcription	
491		A Box OpIE2 Forward priming site	
101	10000001711		
		Honeybee melittin secretion signal	
561		A TTC TTA GTC AAC GTT GCC CTT GTT TTT ATG GTC GTA TAC ATT TCT	
	Met Ly	vs Phe Leu Val Asn Val Ala Leu Val Phe Met Val Val Tyr Ile Ser	
616		Sph Hind III Asp718 Kpn Sac BamH Spe EcoR EcoR	
616	TAC ATC TAT Tyr Ile Tyr	GCC GGC ATGCTAAGCT TGGTACCGAG CTCGGATCCA CTAGTCCAGT GTGGTGGAAT	
	iyi ile iyi		
	5 5	Melittin Cleavage Site	
681		TCCAGCACAG TGGCGGCCGC TCGAGGTCAC CCATTCGAA GGT AAG CCT ATC CCT	
001	ICIGCAGAIA	Gly Lys Pro Ile Pro	
		V5 epitope Polyhistidine (6xHis) region	
745	AAC CCT CTC	C CTC GGT CTC GAT TCT ACG CGT ACC GGT CAT CAT CAC CAT CAC CAT	
	Asn Pro Leu	ı Leu Gly Leu Asp Ser Thr Arg Thr Gly His His His His His His	
	r	OpIE2 Reverse priming site	
799	TGA GTTTATC	TG ACTAAATCTT AGTTTGTATT GTCATGTTTT AATACAATAT GTTATGTTTA	
	OnIE2	polyadenylation signal	
861		TAATAAATTT TATAAAATAA TTTCAACTTT TATTGTAACA ACATTGTCCA TTTACACACT	
001		3' untranslated region of OpIE2	

931 CCTTTCAAGC GCGTGGGATC GATGCTCACT

Transforming *E. coli*

	Once you have completed your ligation reactions, into <i>E. coli</i> . Many strains and transformation proterecommendations are provided below.		
<i>E. coli</i> Host	Many <i>E. coli</i> strains are suitable for transformation TOP10 (Catalog no. C610-00) or DH5 . We recom- vectors containing inserts in <i>E. coli</i> strains that are and endonuclease A deficient (<i>end</i> A). For your co as electrocompetent or chemically competent cells	mend that you e recombination nvenience, TO	propagate n deficient (<i>rec</i> A) P10 is available
	Item	Quantity	Catalog no.
	Electrocomp [™] TOP10	5 x 80 μl	C664-55
	1	10 x 80 μl	C664-11
		30 x 80 μl	C664-24
	One Shot [™] TOP10 (chemically competent cells)	21 x 50 µl	C4040-03
	agar plates containing 50–100 μg/ml ampicillin or containing 100 μg/ml blasticidin (see below). One (or blasticidin) resistant colonies, pick 10 transfor	ce you have ob	tained ampicillin
		ce you have ob mants and scre li, the salt conc	agar plates tained ampicillin een for the entration of the
Q Important	containing 100 μg/ml blasticidin (see below). One (or blasticidin) resistant colonies, pick 10 transfor presence and orientation of your insert. To facilitate selection of blasticidin-resistant <i>E. col</i>	ce you have ob mants and scre <i>li,</i> the salt conc must be 7.0. Pr	agar plates tained ampicillin een for the entration of the
Important	containing 100 μg/ml blasticidin (see below). One (or blasticidin) resistant colonies, pick 10 transfor presence and orientation of your insert. To facilitate selection of blasticidin-resistant <i>E. col</i> medium must remain low (<90 mM) and the pH	te you have ob mants and scre li, the salt conc must be 7.0. Pr ndix, page 22.	agar plates tained ampicillin een for the entration of the epare Low Salt
D Important	 containing 100 μg/ml blasticidin (see below). One (or blasticidin) resistant colonies, pick 10 transfor presence and orientation of your insert. To facilitate selection of blasticidin-resistant <i>E. col</i> medium must remain low (<90 mM) and the pH LB broth and plates using the recipe in the Apper Failure to lower the salt content of your LB med 	t to confirm tha in signal and th It to confirm tha	agar plates tained ampicillin een for the entration of the repare Low Salt It in non- at your gene is ne C-terminal nd Reverse
D Important	 containing 100 μg/ml blasticidin (see below). One (or blasticidin) resistant colonies, pick 10 transfor presence and orientation of your insert. To facilitate selection of blasticidin-resistant <i>E. col</i> medium must remain low (<90 mM) and the pH m LB broth and plates using the recipe in the Apper Failure to lower the salt content of your LB med selection due to inhibition of the drug. We recommend that you sequence your construct fused in frame with the N-terminal HBM secretio V5 epitope and the polyhistidine tag. Use the Opl sequencing primers included in your kit or a primers 	t to confirm than n signal and th IE Forward an ner to your ger	agar plates tained ampicillin een for the entration of the repare Low Salt It in non- at your gene is ne C-terminal nd Reverse ne of interest to

Transforming E. coli, continued

Long-Term Storage	Once you have confirmed that you have the correct clone, prepare a glycerol stock for long-term storage. It is also a good idea to keep a stock of plasmid DNA at -20°C.
	To prepare a glycerol stock:
	1. Grow the <i>E. coli</i> strain containing the plasmid overnight.

- 2. Combine 0.85 ml of the overnight culture with 0.15 ml of sterile glycerol.
- 3. Vortex and transfer to a labeled cryovial.
- 4. Freeze the tube in liquid nitrogen or dry ice/ethanol bath and store at -80° C.

Transient Expression in Insect Cells

Introduction	Once you have cloned your gene of interest into pMIB/V5-His, you are ready to transfect your construct into Sf9, Sf21, or High Five [™] cells using lipid-mediated transfection and test for expression of your protein.
Plasmid Preparation	Plasmid DNA for transfection into insect cells must be very pure and free from phenol and sodium chloride. Contaminants will kill the cells, and salt will interfere with lipid complexing, decreasing transfection efficiency. We recommend isolating plasmid DNA using the PureLink [™] HQ Mini Plasmid Purification Kit (Catalog no. K2100-01) or other resin-based DNA purification systems. The PureLink [™] HQ Mini Plasmid Purification Kit is a small-scale plasmid isolation kit that isolates 10–15 µg of plasmid DNA from 10–15 ml of bacterial culture. Plasmid can be used directly for transfection of insect cells.
Method of Transfection	We recommend lipid-mediated transfection with Cellfectin [®] Reagent. Note that other lipids may be substituted, although transfection conditions may have to be optimized.
	Expected Transfection Efficiency using Cellfectin [®] Reagent:
	• 40–60% for Sf9 or Sf21 cells
	• 40–60% for High Five [™] cells
	Note : Other transfection methods (<i>e.g.</i> calcium phosphate and electroporation (Mann and King, 1989)) have also been tested with High Five ^{T} cells.
Control of Plasmid Quality	To test the quality of a plasmid DNA preparation, include a mock transfection using DNA only (no lipids) in all transfection experiments. At about 24 to 48 hours posttransfection, compare the DNA only mock transfection with cells transfected with plasmid. If the plasmid preparation contains contaminants, then the cells will appear unhealthy and start to lyse.
Before Starting	You will need the following for each transfection experiment:
Derere etarting	 1–10 µg of highly purified plasmid DNA (~1 µg/µl in TE buffer)
	 Either log-phase Sf9 or Sf21 cells (1.6–2.5 x 10⁶ cells/ml, >95% viability) or log-phase High Five[™] cells (1.8–2.3 x 10⁶ cells/ml, >95% viability)
	• Serum-free medium (see the next page)
	• 60 mm tissue-culture dishes
	• 1.5 ml sterile microcentrifuge tubes
	Rocking platform only (NOT orbital)
	• 27°C incubator
	Inverted Microscope
	Paper towels and air-tight bags or containers
	• 5 mM EDTA, pH 8

Serum-Free Media	Several serum-free media are available from Invitrogen for use in transfection experiments with pMIB/V5-His. Express Five® SFM (Catalog no. 10486-025) is recommended for use with High Five [™] cells while Sf-900 II SFM (1X) (Catalog no. 10902-088) is optimized for use with Sf9 and Sf21 cells. Other serum-free media may be used, although you may have to optimize conditions for transfection and selection. Note that if you wish to transfect Sf9 or Sf21 cells in serum-free medium, you will need to adapt the cells to serum-free medium before transfection (see Insect Cell Lines manual for a protocol).
Prepare Cells	For each transfection, use log-phase cells with greater than 95% viability. We recommend that you set up enough plates to perform a time course for expression of your gene of interest. Test for expression 2, 3, and 4 days posttransfection. You will need at least one 60 mm plate for each time point.
	1. For Sf9, Sf21 cells, or High Five [™] cells, seed 2 x 10 ⁶ cells in appropriate serum-free medium in a 60 mm dish.
	Rock gently from side to side for 2 to 3 minutes to evenly distribute the cells. Do not swirl the plates in a circular motion. Cells should be 50 to 60% confluent.
	2. Incubate the cells for at least 15 minutes without rocking to allow the cells to fully attach to the bottom of the dish to form a monolayer of cells.
	3. Verify that the cells have attached by inspecting them under an inverted microscope.
Positive and	We recommend that you include the following controls:
Negative Controls	• pMIB/V5-His/CAT vector as a positive control for transfection and expression
	Lipid only as a negative control
	DNA only to check for DNA contamination
Note	• If you use another lipid besides Cellfectin [®] Reagent, review the protocol on the next page and consult the manufacturer's instructions to adapt the protocol for your use. You may have to empirically determine the optimal conditions for transfection.
	• <u>Do not linearize</u> the plasmid prior to transfection. Linearizing the plasmid appears to decrease protein expression. The reason for this is not known.

Transfection Procedure	me an cu	asmid DNA and Cellfectin [®] Reagent are mixed together in the a edium (see below) and incubated with freshly seeded insect cel nount of cells, liposomes, and plasmid DNA has been optimize lture plates. It is important that you optimize transfection cond e plates or flasks other than 60 mm plates.	lls. The d for 60 mm		
	Note: If you are using serum-free medium, we recommend using Sf-900 II SFM to transfect Sf9 cells and Express Five® SFM to transfect High Five [™] cells. If you are using Grace's Medium, be sure to use Grace's Medium without supplements. The proteins in the FBS and supplements will interfere with the liposomes, causing the transfection efficiency to decrease.				
	1.	To prepare each transfection mixture, use a 1.5 ml microcentr Add the following reagents:	ifuge tube.		
		Grace's Insect Media (Sf9) OR Appropriate serum-free medium	1 ml		
		pMIB/V5-His plasmid or construct (~1 μ g/ μ l in TE, pH 8)	1–10 µl		
		Cellfectin® Reagent (mix well before use and always add las	t) 20 μl		
	2.	Gently mix the transfection mixture for 10 seconds.			
	3.	Incubate the transfection mixture at room temperature for 15 While the transfection mixture is incubating, proceed to Step			
	4.	Carefully remove the medium from the cells without disruption monolayer. Note: If you are using medium containing serum, cells by carefully adding 2 ml of fresh Grace's Insect Media w supplements or FBS . This will remove trace amounts of serue decrease the efficiency of liposome transfection. Remove all of from the monolayer.	, wash the r ithout m that will		
	5.	Add the entire transfection mix dropwise into the 60 mm dishall transfections.	n. Repeat for		
		(Distribute the drops evenly over the monolayer. This method chances of disturbing the monolayer.)	d reduces the		
	6.	Incubate the dishes at room temperature for 4 hours on a side rocking platform. Adjust speed to ~2 side to side motions per If you do not have a rocker, manually rock the dishes periodi	minute. Note :		
	7.	Following the 4-hour incubation period, add 1–2 ml of compl medium (Sf9 cells) or the appropriate serum-free medium to dish, place the dishes in a sealed plastic bag with moist paper prevent evaporation and incubate at 27°C. Note : It is not nece remove the transfection solution as Cellfectin [®] Reagent is not cells. If you are using a different lipid and observe loss of vial remove the transfection solution after 4 hours, rinse two time medium, and replace with 1–2 ml of fresh medium.	each 60 mm r towels to essary to toxic to the bility, then		
	8.	Harvest the cells 2, 3, and 4 days posttransfection and assay for of your gene (see next page). There's no need to add fresh me cells are sealed in an airtight plastic bag with moist paper tow	dium if the		

Testing for Secreted Protein Expression	Use the medium from one 60 mm plate for each expression experiment. If you are also harvesting cells, see Preparing Cell Lysates below. Before starting, prepare 2X SDS-PAGE sample buffer. A recipe is provided on page 23 for your convenience, but other recipes are suitable. If you are using pre-cast polyacrylamide gels (see below), refer to the manufacturer's instructions to prepare the appropriate sample buffer.		
	1. Prepare an SDS-PAGE gel that will resolve your expected recombinant protein.		
	2. Harvest the medium from the cells.		
	Note: Depending on the sensitivity of your antibody, media samples can be concentrated to approximately 10-fold prior to Western blot analysis. You may use any method to concentrate the media samples. We suggest using commercially available ultrafiltration devices (<i>e.g.</i> Centricon) or a Speed-Vac.		
	3. Mix 20 μ l of the media samples with 20 μ l of 2X SDS-PAGE sample buffer.		
	4. Boil the samples for 5 minutes. Centrifuge briefly.		
	5. Load samples, electrophorese, blot, and probe with a suitable antibody (see the next page).		
	6. Visualize proteins using your desired method.		
Note Note Preparing Cell	The C-terminal tag containing the V5 epitope and 6xHis tag will increase the size of your protein by ~3 kDa. Note that any additional amino acids between your protein and the tags are not included in this molecular weight calculation. Before starting, prepare Cell Lysis Buffer. A recipe is provided on page 23 for your		
Lysates	convenience, but other recipes are suitable.		
	1. Prepare an SDS-PAGE gel that will resolve your expected recombinant protein.		
	2. Remove the medium from each plate and prepare samples as detailed above.		
	 Wash the cells once with 1X PBS (see page 23 for a recipe). Add 100 μl Cell Lysis Buffer and slough (or scrape) the cells into a microcentrifuge tube. Vortex the cells to ensure they are completely lysed. 		
	4. Centrifuge at maximum speed for 1–2 minutes to pellet nuclei and cell membranes. Transfer the supernatant to a new tube.		
	5. Assay the lysate for protein concentration. You may use the Bradford, Lowry, or BCA assays (Pierce).		
	 Mix 30 μl of lysate with 30 μl of 2X SDS-PAGE sample buffer. Proceed with Steps 5 and 6 as detailed above. 		
Polyacrylamide Gel Electrophoresis	To facilitate separation and visualization of your recombinant protein by polyacrylamide gel electrophoresis, a wide range of pre-cast NuPAGE [®] and Tris-Glycine polyacrylamide gels are available from Invitrogen. In addition, Invitrogen also carries a large selection of molecular weight protein standards and staining kits. For more information about the appropriate gels, standards, and stains to use to visualize your recombinant protein, refer to our Web site (www.invitrogen.com) or call Technical Service (see page 30).		

Western Analysis	To detect expression of your recombinant fusion protein by Western blot analysis, you may use the Anti-V5 antibodies or the Anti-His(C-term) antibodies available from Invitrogen (see page vi for ordering information) or an antibody to your protein of interest. In addition, the Positope [™] Control Protein (Catalog no. R900-50) is available from Invitrogen for use as a positive control for detection of fusion proteins containing a V5 epitope or a polyhistidine (6xHis) tag. WesternBreeze [™] Chromogenic Kits and WesternBreeze [™] Chemiluminescent Kits are available from Invitrogen to facilitate detection of antibodies by colorimetric or chemiluminescent methods. For more information, refer to our Web site (www.invitrogen.com) or call Technical Service (see page 30).
Assay for CAT	If you use pMIB/V5-His/CAT as a positive control vector, you may assay for CAT expression using your method of choice. Commercial kits to assay for CAT protein are available. There is also a novel, rapid radioactive assay (Neumann <i>et al.</i> , 1987).
	CAT can be detected by Western blot using antibodies against the C-terminal fusion tag or an antibody against CAT (Catalog no. R902-25). The CAT/V5-His protein fusion migrates around 34 kDa on an SDS-PAGE gel.

Troubleshooting Cells Growing Too Slowly (Or Not At All).

For troubleshooting guidelines regarding cell culture, refer to the Insect Cell Lines manual. This manual may be downloaded from our Web site (www.invitrogen.com).

Low Transfection Efficiency.

If the transfection efficiencies are too low, check the following:

- **Impure DNA.** Transfected cells will appear unhealthy when compared to the negative control (DNA only; no lipids). Use clean, pure DNA isolated by resin based DNA isolation kits (*e.g.* S.N.A.P. MidiPrep Kit).
- **Poor Cell Viability.** Be sure to test cells for viability and make sure you use log-phase cells. Refer to the Insect Cell Lines manual to troubleshoot cell culture.
- Method of Transfection. Optimize transfection.

Low or No Secreted Protein Expression

- Gene not cloned in frame with the N-terminal HBM secretion signal. If it is not in frame with the N-terminal secretion signal, the recombinant protein may be poorly expressed or not expressed at all. Re-design your cloning strategy to make sure that you clone your gene in frame with the HBM secretion signal.
- **Optimize expression.** If you've tried a time course to optimize expression, try switching cell lines. Proteins may express better in a different cell line.
- **Proteins are degraded.** Include protease inhibitors in the medium when harvesting to prevent degradation of recombinant protein.
- **Poor secretion.** If the protein is normally localized to the nucleus, addition of the secretion signal to force the protein into the secretory pathway may result in incorrect folding and retention in the cell. You may detect expression of your protein in the cellular fraction using the Anti-V5 antibodies or the Anti-His(C-term) antibodies (see page vi for ordering information).

Selecting Stable Cell Lines

Introduction	Once you have demonstrated that your protein is expressed in Sf9, Sf21, or High Five [™] cells, you may wish to create stable expression cell lines for long-term storage and large-scale production of the desired protein.
Nature of Stable Cell Lines	Note that stable cell lines are created by multiple copy integration of the vector. Amplification as is the case with calcium phosphate transfection and hygromycin resistance in <i>Drosophila</i> is generally not observed.
Before Starting	Review the information on blasticidin S on page 29. Prepare a stock solution of blasticidin S as described.
Effect of Blasticidin on Sensitive and Resistant Cells	Cytopathic effects should be visible within 3–5 days depending on the concentration of blasticidin in the medium. Sensitive cells will enlarge and become filled with vesicles. The outer membrane will show signs of blebbing, and cells will eventually detach from the plate. Blasticidin-resistant cells should continue to divide at regular intervals to form distinct colonies. There should be no distinct morphological changes between blasticidin-resistant cells and cells not under selection with blasticidin.
Suggested Blasticidin Concentrations	In general, concentrations around 10 μ g/ml will kill Sf9 cells (in complete TNM- FH medium) and concentrations around 20 μ g/ml will kill High Five TM cells (in Express Five [®] SFM) within one week, although a few cells will remain that exclude trypan blue. To obtain faster and more thorough killing (in 3–4 days), we recommend using 50–80 μ g/ml blasticidin. Using higher concentrations of blasticidin may result in enrichment of clones containing multiple integrations of your gene of interest. Once you have obtained your stable cell line(s), the concentration of blasticidin can be lowered and cells maintained at 10 μ g/ml blasticidin. If you use other media or have trouble selecting cells using the concentrations above, we recommend that you perform a kill curve (see below).
Determining Blasticidin Sensitivity	 If you wish to test your cell line for sensitivity to blasticidin, perform a kill curve as described below. Assays can be performed in 24-well tissue culture plates. Seed insect cells in TNM-FH or serum-free medium of choice. The next day, substitute culture medium with medium containing varying concentrations of blasticidin (0–100 µg/ml blasticidin). Replenish the selective medium every 3–4 days and observe the percentage of surviving cells. Note the percentage of surviving cells at regular intervals to determine the appropriate concentration of blasticidin that kills the cells within 1 week after addition of blasticidin.

Selecting Stable Cell Lines, continued

Reminder: <u>Do not linearize</u> the plasmid prior to transfection. Linearizing the plasmid appears to decrease protein expression. The reason for this is not known.

Stable Transfection For stable transfections, follow the steps below. Include a mock transfection and a positive control (pMIB/V5-His/CAT).

- 1. Follow the transfection procedure on page 12, Steps 1 to 6.
- 2. Forty-eight hours posttransfection, remove the transfection solution and add fresh medium (**no blasticidin**).
- 3. Split cells 1:5 (20% confluent) and let cells attach overnight before adding selective medium.
- 4. Remove medium and replace with medium containing blasticidin at the appropriate concentration. Incubate cells at 27°C.
- 5. Replace selective medium every 3 to 4 days until you observe foci forming. At this point you may use cloning cylinders or dilution to isolate clonal cell lines (next page) or you can let resistant cells grow out to confluence for a polyclonal cell line (2 to 3 weeks).
- 6. To isolate a polyclonal cell line, let the resistant cells grow to confluence and split the cells 1:5 and test for expression. **Important**: Always use medium **without** blasticidin when splitting cells. Let the cells attach before adding selective medium.
- 7. Expand resistant cells into flasks to prepare frozen stocks. Always use medium containing blasticidin when maintaining stable lepidopteran cell lines. You may lower the concentration of blasticidin to 10 μg/ml for maintenance.

Selecting Stable Cell Lines, continued

Isolation of Clonal Cell Lines Using Cloning Cylinders

If you elect to select clonal cell lines, try to isolate as many foci (colonies) as possible for expression testing. As in mammalian cell culture, the location of integration may affect expression of your gene.

Tip: Perform selections in small plates or wells. When you remove the medium, you must work quickly to prevent the cells from drying out. Using smaller plates or wells limits the number of colonies you can choose at a time. To select more colonies, increase the number of plates or wells, not the size.

Before beginning, have sterile cloning cylinders on hand. To select colonies:

- 1. Examine the closed plate under a microscope and mark the location of each colony on the top of the plate. Transfer the markings to the bottom of the plate. Be sure to include orientation marks. **Note**: Each colony will contain 50 to 200 cells. Sf9 cells tend to spread more than High Five[™] cells.
- 2. Move the culture dish to the sterile cabinet and remove the lid.
- 3. Apply a thin layer of sterile silicon grease to the bottom of a cloning cylinder (Scienceware, Catalog no. 378747-00 or Belco, Catalog no. 2090-00608), using a sterile cotton-tipped wooden applicator. The layer should be thick enough to retard the flow of liquid from the cylinder, without obscuring the opening on the inside. **Tip**: Cloning cylinders and silicon grease can be sterilized together by placing a small amount of grease in a glass petri dish and placing the cloning cylinders upright in the grease. After autoclaving, the grease will have spread out in a thin layer to coat the bottom of the cylinders.
- 4. Aspirate the culture medium and place the cylinder firmly and directly over the marked area. Use a microscope if it is available to help you direct placement of the cylinder.
- 5. Use 20 to $100 \ \mu$ l of medium (no blasticidin) to slough the cells. Try to hold the pipette tip away from the sides of the cloning cylinder to avoid the grease (this will take a little practice).
- 6. Remove the cells and medium and transfer to a microtiter plate and let the cells attach. Remove medium and replace with selective medium for culturing. Expand the cell line and test for expression of your gene of interest. Important: Always use medium without blasticidin when splitting cells. Let the cells attach before adding selective medium.

Selecting Stable Cell Lines, continued

Isolation of Clonal Cell Lines Using a Dilution Method

You may also select clonal cell lines using a quick dilution method. The objective of this method is to dilute the cells so that under selective pressure only one stable viable cell per well is achieved. Note that the higher your transfection efficiency, the more you should dilute out your cells. The protocol below works well with cells transfected at 5–10% efficiency.

- 1. Forty-eight hours after transfection, dilute the cells to 1 x 10⁴ cells/ml in medium **without** blasticidin. **Note**: Other dilutions of the culture should also be used as transfection efficiency will determine how many transformed cells there will be per well.
- 2. Add 100 μ l of the cell solution from Step 1 to 32 wells of a 96-well microtiter plate (8 rows by 4 columns).
- 3. Dilute the remaining cells 1:1 with medium **without** blasticidin and add 100 l of this solution to the next group of 32 wells (8 x 4).
- 4. Once again, dilute the remaining cells 1:1 with medium **without** blasticidin and add 100 l of this solution to the last group of 32 wells. **Note**: Although the cells can be diluted to low numbers, cell density is critical for viability. If the density drops below a certain level, the cells will not grow.
- 5. Let the cells attach overnight, then remove the medium and replace with medium containing blasticidin. **Note**: Removing and replacing medium may be tedious. If you slough the cells gently, it is possible to dilute the cells directly into selective medium.
- 6. Wrap the plate and incubate at 27°C for 1 week. It is not necessary to change the medium or place in a humid environment.
- 7. Check the plate after a week and mark the wells that have only one colony.
- 8. Continue to incubate the plate until the colony fills most of the well.
- 9. Harvest the cells and transfer to a 24-well plate with 0.5 ml of fresh medium containing blasticidin.
- 10. Continue to expand the clone to 12- and 6-well plates, and finally to a T-25 flask.

Assay for Expression

Assay each of your cell lines for yield of the desired protein and select the one with the highest yield for scale-up and purification of recombinant protein.

Remember to prepare master stocks and working stocks of your stable cell lines prior to scale-up and purification. Refer to the Insect Cell Lines manual for information on freezing your cells and scaling up for purification.

Scale-Up and Purification

Introduction	Once you have obtained stable cell lines expressing the protein of interest and prepared frozen stocks of your cell lines, you are ready to purify your protein. General information for protein purification is provided below. Eventually, you may expand your stable cell line into larger flasks, spinners, shake flasks, or bioreactors to obtain the desired yield of protein. We recommend that you culture cells in serum-free medium to simplify purification.
Important	As you expand your stable cell line, you can maintain the concentration of blasticidin at 10 μ g/ml.
Adapting Cells to Different Medium	Cells can be switched from complete TNM-FH to serum-free medium during passage. Refer to the Insect Cell Lines manual for more information on how to adapt cells to different medium.
CAUTION	If you plan to use a metal-chelating resin such as ProBond [™] to purify your secreted protein from serum-free medium, note that adding serum-free medium directly to the column will strip the nickel ions from the resin. See the information below in Purification of 6xHis-tagged Proteins from Medium for a general recommendation to address this issue.
Purifying Proteins from Medium	Many protocols are suitable for purifying proteins from the medium. The choice of protocol depends on the nature of the protein being purified. Note that the culture volume needed to purify sufficient quantities of protein is dependent on the expression level of your protein and the method of detection. To purify 6xHis-tagged proteins from the medium, see below.
Purification of 6xHis-tagged Proteins from Medium	 To purify 6xHis-tagged recombinant proteins from the culture medium, we recommend that you perform dialysis or ion exchange chromatography prior to affinity chromatography on metal-chelating resins. Dialysis allows: Removal of media components that strip Ni⁺² from metal-chelating resins Ion exchange chromatography allows: Removal of media components that strip Ni⁺² from metal-chelating resins Concentration of your sample for easier manipulation in subsequent
	purification steps Conditions for successful ion exchange chromatography will vary depending on the protein. For more information, refer to <i>Current Protocols in Protein Science</i> (Coligan <i>et al.</i> , 1998), <i>Current Protocols in Molecular Biology</i> , Unit 10 (Ausubel <i>et al.</i> , 1994) or the <i>Guide to Protein Purification</i> (Deutscher, 1990).

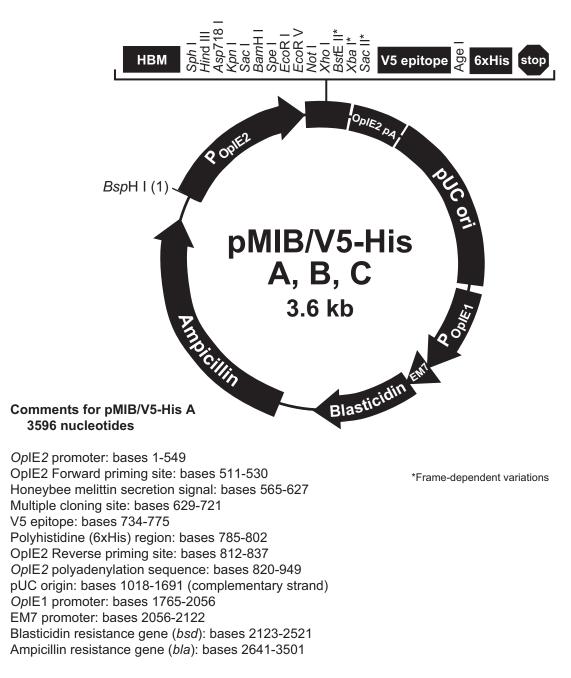
Scale-Up and Purification, continued

Metal-chelating Resin	You may use the ProBond [™] Protein Purification Kit (Catalog no. K850-01) or a similar product to purify your 6xHis-tagged protein. The ProBond [™] Protein Purification Kit contains ProBond [™] , a metal-chelating resin specifically designed to purify 6xHis-tagged proteins. Before starting, be sure to consult the ProBond [™] Protein Purification manual to familiarize yourself with the buffers and the binding and elution conditions. If you are using another resin, consult the manufacturer's instructions.
Note	Many insect cell proteins are naturally rich in histidines, with some containing stretches of six histidines. Some of these proteins may be secreted. When using the ProBond [™] Protein Purification Kit or other similar products to purify 6xHistagged proteins, these histidine-rich proteins may co-purify with your protein of interest. The contamination can be significant if your protein is expressed and secreted at low levels. We recommend that you add 5 mM imidazole to the binding buffer prior to addition of the protein mixture to the column. Addition of imidazole may help to reduce background contamination by preventing proteins with low specificity from binding to the metal-chelating resin.
Scale-Up	To scale up insect cell culture, refer to the Insect Cell Lines manual.

Appendix

Recipes

LB (Luria-Bertani) Medium and Plates	Composition: 10 g Tryptone 5 g Yeast Extract 10 g NaCl pH 7.0
	 Combine the dry reagents above and add deionized, distilled water to 950 ml.
	2. Adjust the pH of the solution to 7.0 with NaOH and bring the volume up to 1 liter.
	3. Autoclave on liquid cycle for 20 minutes. Allow solution to cool to ~55°C and add antibiotic if needed.
	4. Store at room temperature or at $+4^{\circ}$ C.
	LB agar plates
	1. Prepare LB medium as above, but add 15 g/L agar before autoclaving.
	2. Autoclave on liquid cycle for 20 minutes.
	3. After autoclaving, cool to ~55°C, add antibiotic and pour into 10 cm plates.
	4. Let harden, then invert and store at +4°C, in the dark.
Low Salt LB Medium with Blasticidin	10 g Tryptone 5 g NaCl 5 g Yeast Extract
	1. Combine the dry reagents above and add deionized, distilled water to 950 ml.
	2. Adjust the pH of the solution to 7.0 with NaOH and bring the volume up to 1 liter. For plates, add 15 g/L agar before autoclaving.
	 Autoclave on liquid cycle for 20 minutes. Allow solution to cool to ~55°C before adding the blasticidin to 100 g/ml final concentration.
	 Store plates at +4°C in the dark. Plates containing blasticidin are stable for up to 2 weeks.
Trypan Blue Exclusion Assay	 Prepare a 0.4% stock solution of trypan blue in phosphate buffered saline, pH 7.4
	2. Mix 0.1 ml of trypan blue solution with 1 ml of cells and examine under a microscope at low magnification.
	3. Dead cells will take up trypan blue while live cells will exclude it. Count live cells versus dead cells. Cell viability should be at least 95–99% for healthy log-phase cultures.


Recipes, continued

Cell Lysis Buffer	50 mM Tris, pH 7.8 150 mM NaCl 1% Nonidet P-40			
	1. This solution can be prepared from the following common stock solutio For 100 ml, combine			
	1 M Tris base 5 ml			
	5 M NaCl 3 ml			
	Nonidet P-40 1 ml			
	2. Bring the volume up to 90 ml with deionized water and adjust the pH to with HCl.			
	3. Bring the volume up to 100 ml. Store at room temperature.			
	p prevent proteolysis, you may add 1 mM PMSF, 1 M leupeptin, and 0.1 μ protinin before use.	М		
1X PBS	$\begin{array}{l} & 37 \text{ mM NaCl} \\ & 7 \text{ mM KCl} \\ & 0 \text{ mM Na}_2\text{HPO}_4 \\ & 8 \text{ mM KH}_2\text{PO}_4 \\ & \text{Dissolve: 8 g NaCl} \\ & 0.2 \text{ g KCl} \\ & 1.44 \text{ g Na}_2\text{HPO}_4 \\ & 0.24 \text{ g KH}_2\text{PO}_4 \end{array}$			
	in 800 ml deionized water.			
	2. Adjust pH to 7.4 with concentrated HCl.			
	3. Bring the volume to 1 liter. You may wish to filter-sterilize or autoclave the solution to increase shelf life.			
2X SDS-PAGE	Combine the following reagents:			
Sample Buffer	0.5 M Tris-HCl, pH 6.8 2.5 ml Glycerol (100%) 2 ml β-mercaptoethanol 0.4 ml Bromophenol Blue 0.02 g			
	SDS 0.4 g			
	Bring the volume to 10 ml with sterile water.			
	3. Aliquot and freeze at –20°C until needed.			

pMIB/V5-His Map and Features

Map of pMIB/V5-His

The figure below summarizes the features of the pMIB/V5-His A, B, and C vectors. For a more detailed explanation of each feature, see the next page. The complete sequences of pMIB/V5-His A, B, and C are available for downloading from our Web site (www.invitrogen.com) or from Technical Service (see page 30).

pMIB/V5-His Map and Features, continued

Features of pMIB/V5-His

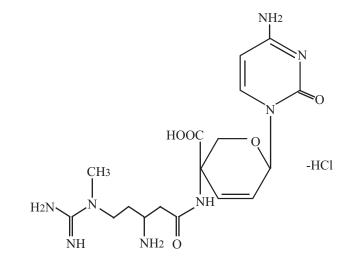
The features of pMIB/V5-His A, B, and C are described below. All features have been functionally tested. The multiple cloning site has been tested by restriction analysis.

Features	Function
<i>OpIE2</i> promoter	Provides constitutive expression of the gene of interest in lepidopteran insect cells (Theilmann and Stewart, 1992).
OpIE2 Forward priming site	Allows sequencing of the insert from the 5' end.
Honeybee melittin secretion signal (HBM)	Directs secreted expression of the gene of interest (Tessier <i>et al.,</i> 1991).
Multiple cloning site	Allows insertion of the gene of interest for secreted expression.
V5 epitope (Gly-Lys-Pro-Ile-Pro-Asn-Pro- Leu-Leu-Gly-Leu-Asp-Ser-Thr)	Allows detection of your recombinant protein with the Anti-V5 Antibody (Catalog no. R960-25) or Anti V5-HRP Antibody (Catalog no. R961-25) (Southern <i>et al.</i> , 1991).
Polyhistidine (6xHis) tag	Allows purification of your recombinant protein on metal-chelating resin such as ProBond™.
	In addition, the C-terminal 6xHis tag is the epitope for the Anti-His(C-term) Antibody (Catalog no. R930-25) and the Anti-His(C- term)-HRP Antibody (Catalog no. R931-25) (Lindner <i>et al.</i> , 1997)
OpIE2 Reverse priming site	Allows sequencing of the insert from the 3 [´] end.
<i>OpIE2</i> polyadenylation sequence	Allows efficient transcription termination and polyadenylation of mRNA (Theilmann and Stewart, 1992).
pUC (pMB1-derived) origin	Allows high-copy replication and maintenance in <i>E. coli</i> .
<i>OpIE1</i> promoter	Provides constitutive expression of the blasticidin resistance gene in lepidopteran insect cells (Theilmann and Stewart, 1991).
EM7 promoter	Allows efficient expression of the blasticidin and ampicillin resistance genes in <i>E. coli</i> .
Blasticidin resistance gene (bsd)	Allows generation of stable insect cell lines (Kimura <i>et al.</i> , 1994).
Ampicillin resistance gene (<i>bla</i>)	Allows selection of transformants in <i>E. coli</i> .
	Note : The native promoter has been removed. Transcription is assumed to start from the EM7 promoter.

pMIB/V5-His/CAT Map

Description pMIB/V5-His/CAT is a 4276 bp control vector expressing chloramphenicol acetyltrans-ferase (CAT). The plasmid was constructed by cloning a Hind III/Xho I fragment containing the CAT gene into pMIB/V5-His B. In pMIB/V5-His/CAT, CAT is expressed as a fusion to the V5 epitope and 6xHis tag. The molecular weight of the protein is 34 kDa. The figure below summarizes the features of the pMIB/V5-His/CAT vector. The Map complete nucleotide sequence for pMIB/V5-His/CAT is available for downloading from our Web site (www.invitrogen.com) or by contacting Technical Service (see page 30). V5 epitope 6xHis CAT нвм stor Opiez pa BspHI(1) pMIB/V5-His/CAT 4276 bp TEDICITION NO CONTRACTOR Comments for pMIB/V5-His/CAT 4276 nucleotides Blasticidin OpIE2 promoter: bases 1-549 OpIE2 Forward priming site: bases 511-530 Honeybee melittin secretion signal: bases 565-627 CAT ORF: bases 691-1347 V5 epitope: bases 1414-1455 Polyhistidine (6xHis) region: bases 1465-1482 OpIE2 Reverse priming site: bases 1492-1517 OpIE2 polyadenylation sequence: bases 1500-1629 pUC origin: bases 1698-2371 (complementary strand) OpIE1 promoter: bases 2447-2735 EM7 promoter: bases 2736-2802 Blasticidin resistance gene (bsd): bases 2803-3201 Ampicillin resistance gene (bla): bases 3321-4181

OpIE2 Promoter


Description	The <i>OpIE2</i> promoter has been analyzed by deletion analysis using a CAT reporter in both <i>Lymantria dispar</i> (LD652Y) and <i>Spodoptera frugiperda</i> (Sf9) cells. Expression in Sf9 cells was much higher than in LD652Y cells. Deletion analysis revealed that sequence up to –275 base pairs from the start of transcription is necessary for maximal expression (Theilmann and Stewart, 1992). Additional sequence beyond –275 may broaden the host range expression of this plasmid to other insect cell lines (Tom Pfeifer, personal communication). In addition, an 18 bp element appears to be required for expression. This 18 bp element is repeated almost completely in three different locations and partially at six other locations. These are marked in the figure below. Elimination of the three major 18 bp elements reduces expression to basal levels (Theilmann and Stewart, 1992). The function of these elements is not known.					
	either the (to a CAGT	C or the A inc sequence mo	licated. These	e two transcrij een shown to	otional start s	ites are adjacent in a number of
1	GGATCATGAT	GATAAACAAT	GTATGGTGCT	AATGTTGCTT	CAACAACAAT	TCTGTTGAAC
61	TGTGTTTTCA	TGTTTGCCAA	CAAGCACCTT	TATACTCGGT	GGCCTCCCCA	CCACCAACTT
121	TTTTGCACTG	САААААААСА	CGCTTTTGCA	CGCGGGCCCA	TACATAGTAC	AAACTCTACG
181	TTTCGTAGAC	TATTTTACAT	AAATAGTCTA	CACCGTTGTA	TACGCTCCAA	ATACACTACC
241	ACACATTGAA	CCTTTTTGCA	GTGCAAAAAA	GTACGTGTCG	GCAGTCACGT	AGGCCGGCCT
				ACATTATCGG		r
	1	r		TAACCGCAGC		
421	AACAGGACGC	GCCTCCATAT	TATA	TTATCTCATG	CGCGTGACCG	GACACGAGGC
	GCCCGTCCCG		СТАТАААТАС	AGCCCGCAAC	GATCTGGTAA	ACA <u>CAGT</u> TGA

OpIE1 Promoter

Description	The <i>OpIE1</i> promoter has been analyzed by deletion analysis using a CAT reporter in both <i>Lymantria dispar</i> (LD652Y) and <i>Spodoptera frugiperda</i> (Sf9) cells. Deletion analysis revealed that sequence between –186 and –106 is important for maximum transcription in Sf9 cells (Theilmann and Stewart, 1991). This region contains a canonical CCAAT site (underlined) (Johnson and McKnight, 1989) and an element (R4) that is homologous to the proposed binding site of the <i>Drosophila</i> transcription factor Adf-1 (England <i>et al.</i> , 1990). Three other Adf-1-like elements are found at three other distal locations. These elements are referred to as R1, R2, R3, and R4. R3 and R4 are marked in the figure below. R1 and R2 are not present in pIB/V5-His but do not appear to be important for expression in Sf9 cells. The function of these elements has not been determined.
	R3
1661	TTGGTCATGC GAAACACGCA CGGCGCGCGC ACGCAGCTTA GCACAAACGC GTCGTTGCAC
1721	GCGCCCACCG CTAACCGCAG G <u>CCAAT</u> CGGT CGGCCGGCCT CATATCCGCT CACCAGCCGC
	R4
1781	GTCCTATCGG GCGCGGCTTC CGCGCCCATT TTGAATAAAT AAACGATAAC GCCGTTGGTG
	ТАТА
1841	GCGTGAGGCA TGTAAAAGGT TACATCATTA TCTTGTTCGC CATCCGGTTG GTATAAATAG
	Start of transcription
1901	ACGTTCATGT TGGTTTTTGT TT <u>CAGT</u> TGCA AGTTGGCTGC GGCGCGCGCA GCACCTTTGC
1961	CGGGATCTGC CGGGCTGCAG CACGTGTTGA CAATTAATCA TCGGCATAGT

Blasticidin S

Molecular Weight, Formula, and Structure Merck Index: 12: 1350 MW: 458.9 Formula: C₁₇H₂₆N₈O₅-HCl

Handling Blasticidin	Always wear gloves, mask, goggles, and protective clothing (<i>e.g.</i> a laboratory coat) when handling blasticidin. Weigh out blasticidin and prepare solutions in a hood. To inactivate blasticidin for disposal, add sodium bicarbonate.		
Preparing and Storing Stock	• Blasticidin S is soluble in water and acetic acid. Water is generally used to prepare stock solutions of 5 to 10 mg/ml.		
Solutions	• Dissolve blasticidin S in sterile water and filter-sterilize the solution.		
	• Blasticidin S is unstable in solutions with a pH greater than 8. Be sure the pH of the solution is below 7.		
	 Aliquot in small volumes (see below) and freeze at -20°C for long-term storage or store at +4°C for short term storage. 		
	• Aqueous stock solutions are stable for 1–2 weeks at +4°C and 6–8 weeks at – 20°C.		
	• Do not subject stock solutions to freeze/thaw cycles (do not store in a frost- free freezer).		
	• Upon thawing, use what you need and store at +4°C. Discard after 1–2 weeks.		

Technical Service

World Wide Web	Web Visit the Invitrogen website at <u>www.invitrogen.com</u> for:			
	• Technical resources, including manuals, vector maps and sequences, application notes, MSDSs, FAQs, formulations, citations, handbooks, etc.			
	Complete technical support contact information			
	Access to the Invitrogen Online Catalog			
	Additional product information and special offers			
Contact Us		re information or technical assistance, pl onal international offices are listed on ou		
Corporate Headquarters:		Japanese Headquarters:	European Headquarters:	
Invitrogen Corporation	ı	Invitrogen Japan K.K.	Invitrogen Ltd	
5791 Van Allen Way		Nihonbashi Hama-Cho Park Bldg. 4F	Inchinnan Business Park	
Carlsbad, CA 92008 USA		2-35-4, Hama-Cho, Nihonbashi	3 Fountain Drive	
Tel: 1 760 603 7200		Tel: 81 3 3663 7972	Paisley PA4 9RF, UK	
Tel (Toll Free): 1 800 955 6288		Fax: 81 3 3663 8242	Tel: +44 (0) 141 814 6100	
Fax: 1 760 602 6500		E-mail: jpinfo@invitrogen.com	Tech Fax: +44 (0) 141 814 6117	
E-mail:			E-mail:	
tech_service@invitroge	en.com		eurotech@invitrogen.com	
MSDS	Material Safety Data Sheets (MSDSs) are available on our website at <u>www.invitrogen.com/msds</u> .			
Certificate of	The Ce	rtificate of Analysis (CofA) provides det	ailed quality control information	

Certificate of
AnalysisThe Certificate of Analysis (CofA) provides detailed quality control information
for each product. CofAs are available on our website at
www.invitrogen.com/support, and are searchable by product lot number,
which is printed on each box.

Technical Service, continued

Limited Warranty Invitrogen is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, please contact our Technical Service Representatives.

Invitrogen warrants that all of its products will perform according to the specifications stated on the certificate of analysis. The company will replace, free of charge, any product that does not meet those specifications. <u>This warranty</u> <u>limits Invitrogen Corporation's liability only to the cost of the product</u>. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order.

Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore Invitrogen makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, please report it to our Technical Service Representatives.

Invitrogen assumes no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

Purchaser Notification

Limited Use Label License No. 22: Vectors and Clones Containing Sequences Coding for Histidine Hexamer	This product is licensed under U.S. and foreign patents from Hoffmann- LaRoche, Inc., Nutley, NJ and/or Hoffmann-LaRoche Ltd., Basel, Switzer- land and is provided only for use in research. Information about licenses for commercial use is available from: QIAGEN GmbH, Max-Volmer-Str. 4 D-40724 Hilden, Germany
Limited Use Label License No. 51: Blasticidin and the Blasticidin Selection Marker	Blasticidin and the blasticidin resistance gene (<i>bsd</i>) are sold under patent license and may be used for research purposes only . Inquiries for commercial use should be directed to: Kaken Pharmaceutical Company, Ltd., Bunkyo Green Court, Center Office Building, 19-20 Fl, 28-8 Honkomagome 2-chome, Bunkyo- ku, Tokyo 113-8650, Japan, Tel: 81 3-5977-5008; Fax: 81 3-5977-5008.
Limited Use Label License No. 68: InsectSelect [™] Technology	The InsectSelect [™] System (the "Expression Kit") was developed into an expression system by scientists at the University of British Columbia (UBC) for high-level expression of recombinant proteins. The Expression Kit also incorporates use of the Zeocin [™] selection marker that is licensed to Invitrogen. Components of the InsectSelect [™] System are covered by one or more U.S. patents or patent applications and corresponding foreign patents or patent applications owned and/or licensed by UBC and others.

Purchaser Notification, continued

Limited Use Label License No. 68: InsectSelect[™] Technology, continued Invitrogen Corporation ("Invitrogen") has an exclusive license to sell the Expression Kit to scientists for **academic research or one year commercial evaluation only**, under the terms described below. Use of the Expression Kit for any Commercial Purpose (as defined below) other than evaluation requires the user to obtain a commercial license as detailed below. Before using the Expression Kit, please read the terms and conditions set forth below. Your use of the Expression Kit shall constitute acknowledgment and acceptance of these terms and conditions. If you do not wish to use the Expression Kit pursuant to these terms and conditions, please contact Invitrogen's Technical Services to return the unused and unopened Expression Kit for a full credit. Otherwise, please complete the Product User Registration Card and return it to Invitrogen.

Invitrogen grants you a non-exclusive license to use the enclosed Expression Kit for academic research or for commercial evaluation purposes only. The Expression Kit is being transferred to you in furtherance of, and reliance on, such license. You may not use the Expression Kit, or the materials contained therein, for any Commercial Purpose without a license for such purpose from Research Corporation Technologies (RCT).

If you are a commercial entity, your right to use the Expression Kit expires after one year. Any commercial entity that wishes to use the Expression Kit beyond this one-year period, must obtain a commercial license from RCT. Commercial entities will be contacted by RCT during this one-year period regarding their desire to obtain a commercial license.

You may terminate your use of the Expression Kit at any time by destroying all InsectSelect[™] expression products in your control. Your right to use the Expression Kit will also terminate automatically if you fail to comply with the terms and conditions set forth herein. You shall, upon such termination of your rights, destroy all Expression Kits in your control, and notify Invitrogen of such in writing.

Commercial Purpose include: Any use of Expression Products in a Commercial Product; Any use of Expression Products in the manufacture of a Commercial Product; Any sale of Expression Products; Any use (other than evaluation) of Expression products or the Expression Kit to facilitate or advance research or development of a Commercial Product; and Any use (other than evaluation) of Expression Products or the Expression Kit to facilitate or advance any research or development program the results of which will be applied to the development of Commercial Products.

"Expression Products" means products expressed with the Expression Kit, or with the use of any vectors or host strains in the Expression Kit. "Commercial Product" means any product intended for commercial use.

Access to the Expression Kit must be limited solely to those officers, employees and students of your entity who need access to perform the aforementioned research or evaluation. Each such officer, employee and student must be informed of these terms and conditions and agree, in writing, to be bound by same.

You may not distribute the Expression Kit or the vectors or host strains contained in it to others. You may not transfer modified, altered, or original material from the Expression Kit to a third party without written notification to, and written approval from Invitrogen. You may not assign, sub-license, rent, lease or otherwise transfer any of the rights or obligations set forth herein, except as expressly permitted by Invitrogen and RCT.

Inquiries for commercial use should be directed to: Research Corporation Technologies, 101 North Wilmot Road, Suite 600, Tucson, AZ 85711-3335, Tel: 1-520-748-4400 Fax: 1-520-748-0025.

References

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994). Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience).

Blissard, G. W., and Rohrmann, G. F. (1989). Location, Sequence, Transcriptional Mapping, and Temporal Expression of the gp64 Envelope Glycoprotein Gene of the *Orgyia pseudotsugata* Multicapsid Nuclear Polyhedrosis Virus. Virology *170*, 537-555.

Coligan, J. E., Dunn, B. M., Ploegh, H. L., Speicher, D. W., and Wingfield, P. T. (1998). Current Protocols in Protein Science (New York: John Wiley).

Deutscher, M. P. (1990) Guide to Protein Purification. In *Methods in Enzymology*, Vol. 182. (J. N. Abelson and M. I. Simon, eds.) Academic Press, San Diego, CA.

England, B. P., Heberlien, U., and Tjian, R. (1990). Purified *Drosophila* Transcription Factor, ADH Distal Factor-1 (Adf-1), Binds to Sites in Several *Drosophila* Promoters and Activates Transcription. J. Biol. Chem. *265*, 5086-5094.

Hegedus, D. D., Pfeifer, T. A., Hendry, J., Theilmann, D. A., and Grigliatti, T. A. (1998). A Series of Broad Host Range Shuttle Vectors for Constitutive and Inducible Expression of Heterologous Proteins in Insect Cell Lines. Gene 207, 241-249.

Hegedus, D. D., Pfeifer, T. A., Theilmann, D. A., Kennard, M. L., Gabathuler, R., Jefferies, W. A., and Grigliatti, T. A. (1999). Differences in the Expression and Localization of Human Melanotransferrin in Lepidopteran and Dipteran Insect Cell Lines. Protein Expression and Purification *15*, 296-307.

Izumi, M., Miyazawa, H., Kamakura, T., Yamaguchi, I., Endo, T., and Hanaoka, F. (1991). Blasticidin S-Resistance Gene (*bsr*): A Novel Selectable Marker for Mammalian Cells. Exp. Cell Res. 197, 229-233.

Jarvis, D. L., Weinkauf, C., and Guarino, L. A. (1996). Immediate-Early Baculovirus Vectors for Foreign Gene Expression in Transformed or Infected Insect Cells. Protein Expression and Purification *8*, 191-203.

Johnson, P. F., and McKnight, S. L. (1989). Eukaryotic Transcriptional Regulatory Proteins. Ann. Rev. Biochem. *58*, 799-839.

Kimura, M., Takatsuki, A., and Yamaguchi, I. (1994). Blasticidin S Deaminase Gene from *Aspergillus terreus* (*BSD*): A New Drug Resistance Gene for Transfection of Mammalian Cells. Biochim. Biophys. Acta 1219, 653-659.

Kimura, M., and Yamaguchi, I. (1996). Recent Development in the Use of Blasticidin S, a Microbial Fungicide, as a Useful Reagent in Molecular Biology. Pesticide Biochem. Physiol. *56*.

Lindner, P., Bauer, K., Krebber, A., Nieba, L., Kremmer, E., Krebber, C., Honegger, A., Klinger, B., Mocikat, R., and Pluckthun, A. (1997). Specific Detection of His-tagged Proteins With Recombinant Anti-His Tag scFv-Phosphatase or scFv-Phage Fusions. BioTechniques 22, 140-149.

Mann, S. G., and King, L. A. (1989). Efficient Transfection of Insect Cells with Baculovirus DNA Using Electroporation. J. Gen. Virol. 70, 3501-3505.

References, continued

Neumann, J. R., Morency, C. A., and Russian, K. O. (1987). A Novel Rapid Assay for Chloramphenicol Acetyltransferase Gene Expression. BioTechniques *5*, 444-447.

Pfeifer, T. A., Hegedus, D. D., Grigliatti, T. A., and Theilmann, D. A. (1997). Baculovirus Immediate-Early Promoter-Mediated Expression of the Zeocin Resistance Gene for Use as a Dominant Selectable Marker in Dipteran and Lepidopteran Insect Cell Lines. Gene *188*, 183-190.

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Second Edition (Plainview, New York: Cold Spring Harbor Laboratory Press).

Southern, J. A., Young, D. F., Heaney, F., Baumgartner, W., and Randall, R. E. (1991). Identification of an Epitope on the P and V Proteins of Simian Virus 5 That Distinguishes Between Two Isolates with Different Biological Characteristics. J. Gen. Virol. *72*, 1551-1557.

Takeuchi, S., Hirayama, K., Ueda, K., Sakai, H., and Yonehara, H. (1958). Blasticidin S, A New Antibiotic. The Journal of Antibiotics, Series A 11, 1-5.

Tessier, D. C., Thomas, D. Y., Khouri, H. E., Laliberte, F., and Vernet, T. (1991). Enhanced Secretion from Insect Cells of a Foreign Protein Fused to the Honeybee Melittin Signal Peptide. Gene *98*, 177-183.

Theilmann, D. A., and Stewart, S. (1991). Identification and Characterization of the IE-1 Gene of *Orgyia* pseudotsugata Multicapsid Nuclear Polyhedrosis Virus. Virology 180, 492-508.

Theilmann, D. A., and Stewart, S. (1992). Molecular Analysis of the trans-Activating IE-2 Gene of *Orgyia* pseudotsugata Multicapsid Nuclear Polyhedrosis Virus. Virology 187, 84-96.

Yamaguchi, H., Yamamoto, C., and Tanaka, N. (1965). Inhibition of Protein Synthesis by Blasticidin S. I. Studies with Cell-free Systems from Bacterial and Mammalian Cells. J. Biochem. (Tokyo) *57*, 667-677.

Yamaguchi, I., Shibata, H., Seto, H., and Misato, T. (1975). Isolation and Purification of Blasticidin S Deaminase from *Aspergillus terreus*. J. Antibiotics 28, 7-14.

©2000–2008, 2010 Invitrogen Corporation. All rights reserved.

invitrogen®

Corporate Headquarters Invitrogen Corporation 5791 Van Allen Way Carlsbad, CA 92008 T: 1 760 603 7200 F: 1 760 602 6500 E: tech_support@invitrogen.com

For country-specific contact information, visit our web site at www.invitrogen.com