USER GUIDE

SuperScript® Human Stem Cell cDNA Libraries

For isolating cDNAs, arraying cDNA, and gene expression

Catalog numbers A1030001, A1030101, A1030201, A1030201, A1030301, A1030401, and A1030501

Revision date 10 February 2012 Publication Part number A10323

MAN0000687

For Research Use Only. Not for human or animal therapeutic or diagnostic use.

Table of Contents

General Information

Type of Libraries	This manual is supplied with the following SuperScript [®] cDNA Libraries in pCMV•SPORT6.1:		
	<u>Product</u>	<u>Catalog no.</u>	
	hEC Standard cDNA Library, N-tera2	A1030001	
	hEC Standard cDNA Library, 2102Ep	A1030101	
	hESC Standard cDNA Library, BG01v	A1030201	
	hESC Normalized cDNA Library, BG01	A1030301	
	hESC Normalized cDNA Library, BG02	A1030401	
	hESC Normalized cDNA Library, BG03	A1030501	
Contents and Storage	Each SuperScript [®] Stem Cell cDNA Librar pCMV•SPORT6.1 is supplied in 80% SOB (v/v) glycerol. Store the library at -80°C.	•	
Library	The general specifications for each type of	Stem Cell cDNA	

Specification Library in pCMV•SPORT6.1 are described below.

For more details, refer to the Certificate of Analysis included with the specific library.

Libraries	Features	Total Primary Clones	Av. Insert Size
Standard Amplified	 High representation > 87% colonies contain insert 	>1 x 10 ⁹	>1.2 kb
Normalized, Full-length, Amplified	 High representation 87% colonies contain insert Percentage full-length is ≥ 60% Fold reduction of the high abundance gene should ≥ 10 	>1 x 10 ⁹	>1.4 kb

Intended Use

For research use only. Not intended for any human or animal diagnostic or therapeutic uses.

Cell Line Information

Human embryonic stem cell lines (BG01, BG02, BG03 and BG01v) were cultured in hESC medium (DMEM-F12, 20% Knockout[™] Serum Replacement, 1% Non-essential amino acid, 55 μM 2-Mercaptoethanol, 2 mM L-Glutamine, supplemented with 4 ng/ml basic FGF) conditioned by mitomycin C-inactivated mouse embryonic fibroblast cells (MEF) in a feeder-free fashion. Cells were passaged using collagenase at a ratio of 1:2-4 every 4-5 days.

Human embryonic carcinoma lines (NTera2 and 2102Ep) were cultured in DMEM with 10% FBS and passaged using trypsin at a ratio of 1:4-5 every 3-4 day. All embryonic stem cells are pluripotent.

Cell Line	NTera2	2102Ep	BG01V	BG01	BG02	BG03
Source	Human malignant embryonic testicular carcinoma, subcloned	Primary human testicular teratocarcinoma, subcloned	Human blastocyst	Human blastocyst	Human blastocyst	Human blastocyst
Passage	9	55	67	65	35	18
Karyotype	hypotriploid	hyperdiploid	Abnormal 48XY 12+/17+	Normal 46XY	Normal 46XY	Normal 46XX
Gender	Male	Male	Male	Male	Male	Female
Pluripotent	Yes	Yes	Yes	Yes	Yes	Yes
Immunology M	larkers:					
SSEA-1	-	-	-	-	-	-
SSEA-3	N/A	N/A	+	+	+	+
SSEA-4	+	+	+	+	+	+
TRA 1-60	+	+	+	+	+	+
TRA 1-81	+	+	+	+	+	+
Oct-4	+	+	+	+	+	+
Alkaline Phosphatase	+	+	+	+	+	+

Immunology markers and other information are summarized in the following table.

Accessory Products

Additional Products

The table below lists additional products that may be used with the Stem Cell cDNA Library.

Product	Quantity	Catalog no.
Terrific Broth	500 g	22711-022
T7 Promoter Primer	327 pmoles	N560-02
Sp6 Promoter Primer	342 pmoles	N550-02
2.5 mM dNTP Mix	1 ml	R725-01
Platinum [®] Taq DNA Polymerase	100 reactions	10966-018
Lipofectamine [®] 2000	1.5 ml	11668-019
pDONR [™] 221	6 µg	12536-017
Phenol:Chloroform:Isoamyl Alcohol, (25:24:1, v/v/v)	100 ml	15593-031
Gateway [®] BP Clonase [®] II Enzyme Mix	20 reactions	11789-020
Gateway [®] LR Clonase [®] II Enzyme Mix	20 reactions	11791-020
One Shot [®] OmniMAX [™] 2 T1 Phage- Resistant Cells	20 reactions	C8540-03
One Shot [®] MAX Efficiency [®] DH10B [™] T1 Phage Resistant Cells	20 reactions	12331-013
Not I	200 units	15441-025
EcoR I	5000 units	15202-013
REact [®] 3 Buffer	2 x 1 ml	16303-018
SP6 RNA Polymerase	500 units	18018-010
Library Transfer (BxP reactions) Service		11133-020
Library Transfer (LxR reactions) Service		11133-019

Introduction

-						
()	۱/	0	r,	/1	0	\A /
J	v	С	•	V I	С	W
-		_			_	

Introduction	SuperScript [®] Human Stem Cell cDNA Libraries in pCMV•SPORT6.1 are suitable for isolating cDNAs, PCR of target sequences, cDNA sequencing, preparing cDNA arrays, and gene expression in stem cells. SuperScript [®] Human Stem Cell cDNA Libraries are constructed using SuperScript [®] III Reverse Transcriptase to generate full-length and high-yield cDNA. For the Normalized Full-Length Libraries, 5'CAP antibody was used to further enrich full-length cDNAs followed by subtraction based negative selection to normalize cDNA library, by which the high abundant genes are reduced and low abundant genes are increased. Libraries may be screened using any cDNA positive selection system, PCR, or plate screening procedures, <i>in</i> <i>vitro</i> transcription analysis, or by functional analysis using the eukaryotic CMV promoter.
pCMV•SPORT 6.1	 Important features of pCMV•SPORT6.1 are listed below. The CMV promoter for efficient transient expression of cloned cDNAs in eukaryotic cells An f1 origin for single-strand DNA production The SV40 poly A sequence for transcription termination and polyadenylation of mRNA Sp6 and T7 RNA polymerase promoter sites flanking the multiple cloning site for <i>in vitro</i> transcription of sense and anti-sense RNA The recombination sites, <i>att</i>B1 and <i>att</i>B2 for transfer of cDNA into Gateway[®]-compatible vectors Ampicillin resistance gene for selection of transformants in <i>E. coli</i> The pUC origin for high copy replication and maintenance of the plasmid in <i>E. coli</i> For map of pCMV•SPORT6.1, see page 13.

Overview, Continued

Note	The pCMV•SPORT6.1 vector does NOT contain a eukaryotic origin of replication or antibiotic resistance marker for stable expression in mammalian cells.			
Preparation of SuperScript [®] Human Stem Cell cDNA Libraries	 Each SuperScript[®] Human Stem Cell cDNA library is prepared as follows: mRNA is isolated using two steps. First, total RNA is isolated from tissues or cells using the TRIzol[®] Reagent. Second, polyA mRNA is isolated from total RNA using the FastTrack[®] MAG mRNA Isolation Kit (Life Technologies, K1580-02). First-strand cDNA is synthesized using SuperScript[®] III Reverse Transcriptase For full-length libraries, mRNA/cDNA hybrids were treated with RNAse I to digest single strand mRNAs followed by incubation with 5' cap-antibody magnetic beads to enrich for full-length mRNA/cDNA hybrids Second-strand cDNA is synthesized using <i>E. coli</i> RNAse H, <i>E. coli</i> DNA polymerase I, and <i>E. coli</i> DNA ligase cDNA is blunt-ended using T4 DNA Polymerase and digested with <i>Not</i> I cDNA is size-selected using column chromatography or agarose gel electrophoresis Size-selected cDNA is directionally cloned into the <i>Not</i> 1-<i>EcoR</i> V region of the vector (<i>EcoR</i> V site is destroyed during cloning) Ligation mixture is transformed into competent DH10B[™] T1-Phage Resistant <i>E. coli</i> and the number of primary recombinants is determined To create normalized libraries, cDNA from the primary library was self-subtracted using excess biotinylated RNA from the same library 			
Genotype of DH10B [™] T1	F' mcrA Δ (mrr-hsdRMS-mcrBC) ϕ 80lacZ Δ M15 Δ lacX74 deoR recA1 endA1 araD139 Δ (ara,leu)7697 galU galK rpsL nupG tonA (confers phage T1 and T5 resistance)			

Methods Using the Stem Cell cDNA Library

Introduction	Each SuperScript [®] Human Stem Cell cDNA library may be screened using the PCR or plate screening procedures, by cDNA sequencing, cDNA arrays, <i>in vitro</i> transcription analysis using the Sp6 RNA polymerase, or by functional analysis using the eukaryotic CMV promoter. General procedures for preparing DNA from the library, plate screening, and colony PCR are provided in this section. For detailed information on library screening refer to published references (Ausubel <i>et al.</i> , 1994; Sambrook <i>et al.</i> , 1989). To verify library titer and insert size, see pages 15-16.		
Plating the Library	 Prepare LB plates containing 100 μg/ml ampicillin. To plate a library for screening or picking colonies: 1. Check the titer of the cDNA library on the Certificate of Analysis that is included with the library. If you wish to verify the library titer, see page 15. 2. Based on the library titer, dilute an aliquot of the library such that you can plate 250-500 clones on a 75 mm plate or 2500-5000 clones on a 150 mm plate. Use LB plates containing 100 μg/ml ampicillin. 3. Incubate the plates at 37°C overnight. 4. Use the isolated colonies for colony PCR screening (page 4) or use the method of choice for screening. 		
Plasmid Isolation	You may use the plasmid DNA isolation kit of choice (see www.lifetechnologies.com/napq for a selection of kits). We use the PureLink® HQ Mini Plasmid DNA Purification Kit (Cat. No. K2100-01). If you are planning to use the plasmid DNA for <i>in vitro</i> transcription or other methods to synthesize RNA, you should extract and precipitate the DNA as described on page 18 to remove RNAses. Once you have obtained plasmid DNA you may use it in the application of choice. For a basic plasmid isolation protocol, see the Appendix , page 17.		

Using the Stem Cell cDNA Library, Continued

Colony PCR Screening	cD Yov fro: T7 5'-5 Sp	e this PCR procedu NA or identify des u may use T7 and 9 m the vector or use promoter primer FAATACGACTCA 6 promoter primer AGCTATTTAGGT	ired cDNA clon Sp6 primers (see 9 gene-specific p CTATAGGGAG	es. below for seq rimers. GA-3'	-		
	1.	To 0.5 ml labeled	microcentrifuge	e tube, add 10	µl TE.		
	2.	the plated library	Using a pipette tip, transfer individual colonies from he plated library (previous page) into separate tubes containing TE. Pipet up and down to mix.				
	3.		Incubate the tubes in a prewarmed thermal cycler at 99°C for 5 minutes.				
	4.	Incubate the tubes on ice for 2 minutes.					
	5.	Centrifuge briefly and place the tubes on ice.					
	6.	 6. Prepare the following reaction mix or use the PCR SuperMix (Cat. No. 10572-014) and add 40 μl of reaction mix to each tube. 1X PCR Buffer (contains no MgCl₂) 					
		0.2 mM dNTP mix					
		0.5 µM primers					
		2.4 mM MgCl ₂					
		2.5 units Platinu	, 1	•			
	7.	Bring the volume					
	8.	Perform PCR usin	ng the following	; program:	1		
		Temperature	Time	Cycles			
		95°C	1 minute	1			
		94°C	15 seconds				
		60°C	1 minute	40			
		72°C	1 minute	1			

Continued on next page

5 minutes

10. Electrophorese the samples on a 1.5% agarose gel and

Transfer 10 µl of each reaction to a new tube containing

72°C

2 µl 10X gel loading buffer.

analyze your results.

9.

1

Using the Stem Cell cDNA Library, Continued

Expression of Cloned cDNA

The CMV promoter in pCMV•SPORT6.1 vector enables **transient** expression of cloned cDNAs in mammalian cells. Library or individual clones may be screened using a functional assay of choice.

Note: The pCMV•SPORT6.1 vector does **NOT** contain any eukaryotic origin of replication or antibiotic resistance marker for stable expression in mammalian cells.

For expression of cDNA in bacterial, yeast, or insect expression system, you need to transfer the cDNA insert to an appropriate expression vector using the Gateway[®] Technology (next page). The complete library can be transferred into other different DEST vectors by BxP and LxR reactions. Conditions must be optimized depending on the vector of choice. Library transfer services are available (page iv).

Performing BP Reaction with cDNA Clone

Gateway [®] Technology	The, pCMV•SPORT6.1 contains <i>att</i> B1 and <i>att</i> B2 recombination sites flanking the cDNA cloning site. You can transfer the cDNA insert into other Gateway [®] compatible vectors for expression in different systems by performing a BP recombination reaction with a pDONR [™] vector (page iv) to create an entry vector and the subsequent LR recombination reaction with a DEST vector of choice for expression in the desired system (page 10). For details on Gateway [®] technology, refer to the Gateway [®] Technology Manual with Clonase [®] II available on our Web site at www.lifetechnologies.com or contact Technical Support (see page 21).
BP Reaction to Entry Vector	To perform the BP recombination reaction, you will transfer the gene of interest into an <i>att</i> P-containing donor vector to create an <i>att</i> L-containing entry clone. Genes in the human stem cell cDNA clone are transferred to the donor vector backbone by mixing the DNAs with the Gateway [®] BP Clo- nase [®] II Enzyme Mix (Catalog no. 11789-020). The resulting recombination reaction is then transformed into <i>E. coli</i> and the entry clone is selected. Recombination between the <i>att</i> P (donor vector) and <i>att</i> B (cDNA expression clone) sites replaces the <i>ccd</i> B gene in the donor vector with the gene of interest and results in the formation of <i>att</i> L sites in the entry clone. Once you have obtained an entry vector containing the cDNA gene of interest you may then use the LR reaction to move the gene into the destination (expression) vector of choice. (page 10)
Important	The BP recombination reaction protocol included below is for performing a BP reaction with a specific cDNA clone. Do not use this BP recombination reaction to perform a BP reaction with the library. To perform a library transfer (BxP reactions), custom services are available (see page iv).
	Continued on next page

Performing BP Reaction with cDNA Clone,

Continued

Note	For optimal efficiency, perform the BP recombination reaction using:					
	 Linear <i>att</i>B cDNA clone (see Gateway[®] Technology manual for linearizing the cDNA expression clone) 					
	Supercoiled <i>att</i> P-containing donor vector					
	Note: Supercoiled or relaxed <i>att</i> B substrates may be used, but will react less efficiently than linear <i>att</i> B substrates.					
<i>E. coli</i> Host	You may use any <i>recA</i> , <i>endA E</i> . <i>coli</i> strain including OmniMAX ^{\mathbb{M}} 2-T1 ^{\mathbb{R}} , TOP10, DH5 α ^{\mathbb{M}} , DH10B ^{\mathbb{M}} , DH10B ^{\mathbb{M}} T1, or equivalent for transformation. Do not use <i>E</i> . <i>coli</i> strains that contain the F' episome (<i>e.g.</i> TOP10F'). These strains contain the <i>ccd</i> A gene and will prevent negative selection with the <i>ccd</i> B gene.					
Materials	You will need the following materials:					
Required	• Linearized <i>attB</i> cDNA expression clone (40-100 fmole)					
	 pDONR[™] vector (page iv; resuspend to 150 ng/µl with water) 					
	 Gateway[®] BP Clonase[®] II Enzyme Mix (page iv, keep at - 80°C until use) 					
	• TE Buffer, pH 8.0 (10 mM Tris-HCl, pH 8.0, 1 mM EDTA)					
	 2 μg/μl Proteinase K solution (supplied with the Gateway[®] BP Clonase[®] II Enzyme Mix; thaw and keep on ice until use) 					
	 pEXP7-tet positive control (50 ng/µl; supplied with the Gateway[®] BP Clonase[®] II Enzyme Mix) 					
	Continued on next name					

Performing BP Reaction with cDNA Clone,

Continued

pEXP7-tet is provided in the Gateway [®] BP Clonase [®] II Enzyme Mix as a positive control for the BP reaction. pEXP7- tet is an approximately 1.4 kb linear fragment and contains <i>attB</i> sites flanking the tetracycline resistance gene and its promoter (Tc ^r). Using the pEXP7-tet fragment in a BP reaction with a donor vector results in entry clones that express the tetracycline resistance gene. Determine the efficiency of the BP recombination reaction by streaking entry clones onto LB plates containing 20 µg/ml tetracycline.				
BP Clonase [®] II Enzyme Mix is supplied as a 5X wish to scale the reaction volume, make sure th II Enzyme Mix is at a final concentration of 1X. control, use 100 ng (2 µl) of pEXP7-tet.	ne BP Clonase®			
1. Add the following components to a 1.5 ml microcentrifuge tube at room temperature and mix:				
Linearized <i>att</i> B expression clone (40-100 fmol) Donor vector (150 ng/µl) TE buffer, pH 8.0	1-7 μl 1 μl to 8 μl			
 Thaw on ice the BP Clonase[®] II Enzyme Mix 2 minutes. Vortex the BP Clonase[®] II Enzyme twice (2 seconds each time). 				
 To each sample (Step 1, above), add 2 μl of BP Clonase[®] II Enzyme Mix to the reaction and mix well by vortexing briefly twice. Microcentrifuge briefly. 				
 Return BP Clonase[®] II Enzyme Mix to -20°C or -80°C storage. 				
5. Incubate reactions at 25°C for 1 hour.				
 Add 1 μl of the Proteinase K solution to each terminate the reaction. Vortex briefly. Incuba 37°C for 10 minutes. Proceed to transformation 	te samples at			
	 Enzyme Mix as a positive control for the BP reatet is an approximately 1.4 kb linear fragment a <i>attB</i> sites flanking the tetracycline resistance get promoter (Tc^r). Using the pEXP7-tet fragment in reaction with a donor vector results in entry clorexpress the tetracycline resistance gene. Determ efficiency of the BP recombination reaction by sentry clones onto LB plates containing 20 µg/m BP Clonase® II Enzyme Mix is supplied as a 5X wish to scale the reaction volume, make sure th II Enzyme Mix is at a final concentration of 1X. control, use 100 ng (2 µl) of pEXP7-tet. Add the following components to a 1.5 ml m tube at room temperature and mix: Linearized <i>attB</i> expression clone (40-100 fmol) Donor vector (150 ng/µl) TE buffer, pH 8.0 Thaw on ice the BP Clonase® II Enzyme Mix 2 minutes. Vortex the BP Clonase® II Enzyme Mix to the reaction and mix well by briefly twice. Microcentrifuge briefly. Return BP Clonase® II Enzyme Mix to -20°C ostorage. Incubate reactions at 25°C for 1 hour. Add 1 µl of the Proteinase K solution to each terminate the reaction. Vortex briefly. Incubate 			

Performing BP Reaction with cDNA Clone, Continued

Transfor- mation	Note: Any competent cells (as long as they do not contain the F' episome) with a transformation efficiency of >1.0 × 10^8 transformants/µg may be used.
	 Add 1 μl of each BP reaction into 50 μl of One Shot[®] Competent <i>E. coli</i>. Add 1 μl of pUC19 DNA (10 ng/ml) to a separate tube of cells as a positive control for transformation. Incubate on ice for 30 minutes.
	2. Heat-shock cells by incubating at 42°C for 30 seconds.
	3. Add 250 µl of S.O.C. Medium and incubate at 37°C for 1 hour with shaking.
	4. Plate 20 μl and 100 μl of each transformation onto selective plates.
Expected Results	An efficient BP recombination reaction may produce hundreds of colonies (>1500 colonies if the entire BP reaction is used for transformation and is plated).
	If you included the pEXP7-tet control in your BP recombination experiment, assess the efficiency of the BP reaction by streaking entry clones onto LB agar plates containing $20 \ \mu g/ml$ tetracycline after transformation into a suitable <i>E. coli</i> host. True entry clones should be tetracycline-resistant.
Expressing Your Recombinant Protein	Once you have obtained an entry clone, you will perform the LR recombination reaction to transfer the gene of interest into an <i>att</i> R-containing destination vector of choice for expression in the desired system. Refer to the Gateway [®] Technology manual for performing the LR recombination reaction. Library transfer (LxR reaction) services are available (page iv).

Performing the LR Reaction

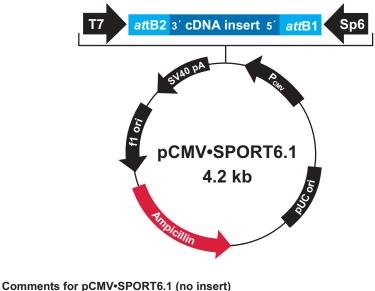
Introduction	After you have generated an entry clone, you will perform the LR recombination reaction to transfer the gene of interest into an <i>att</i> R-containing destination vector to create an <i>att</i> B-containing expression clone. For more information, please refer to the Gateway [®] Manual with Clonase [®] II.
<i>E. coli</i> Host	You may use any <i>recA</i> , <i>endA E</i> . <i>coli</i> strain including OmniMAX TM 2-T1 ^R , TOP10, DH5 α^{TM} , DH10B TM or equivalent for transformation (see page iv for ordering information). Do not transform the LR reaction mixture into <i>E</i> . <i>coli</i> strains that contain the F' episome (<i>e.g.</i> TOP10F'). These strains contain the <i>ccdA</i> gene and will prevent negative selection with the <i>ccdB</i> gene.
Positive Control	The pENTR [™] -gus plasmid is provided with the LR Clonase [®] II Enzyme Mix for use as a positive control for recombination and expression. Using the pENTR [™] -gus entry clone in an LR recombination reaction with a destination vector will allow you to generate an expression clone containing the gene encoding alpha- glucuronidase (<i>gus</i>) (Kertbundit <i>et al.</i> , 1991).
LR Clonase [®] II Enzyme Mix	LR Clonase [®] II Enzyme Mix is available separately from Life Technologies (Catalog no. 11791-020) to catalyze the LR recombination reaction. The LR Clonase [®] II Enzyme Mix combines the proprietary enzyme formulation and 5X LR Clonase Reaction Buffer previously supplied as separate components in LR Clonase [®] Enzyme Mix (Catalog no. 11791-019) into an optimized single tube format to allow easier set-up of the LR recombination reaction. Use the protocol provided on the next page to perform the LR recombination reaction using LR Clonase [®] II Enzyme Mix.

Performing the LR Reaction, Continued

Materials Needed

You should have the following materials on hand before beginning:

- Purified plasmid DNA of your entry clone (50-150 ng/µl in TE, pH 8.0)
- Destination vector of choice (150 ng/µl in TE, pH 8.0)
- LR Clonase[®] II Enzyme Mix (keep at -20°C until immediately before use)
- TE Buffer, pH 8.0 (10 mM Tris-HCl, pH 8.0, 1 mM EDTA)
- 2 µg/µl Proteinase K solution (supplied with the LR Clonase[®] II Enzyme Mix; thaw and keep on ice until use)
- pENTR[™]-gus positive control (50 ng/μl; supplied with the LR Clonase[®] II Enzyme Mix)
- Appropriate competent *E. coli* host and growth media for expression
- S.O.C. Medium
- LB agar plates with the appropriate antibiotic to select for expression clones


Performing the LR Reaction, Continued

LR Reaction	LR Clonase [®] II Enzyme Mix is supplied as a 5X solution. If you wish to scale the reaction volume, make sure the LR Clonase [®] II Enzyme Mix is at a final concentration of 1X. For a positive control, use 100 ng (2 µl) of pENTR [™] -gus.				
	1. Add the following components to a 1.5 ml microcentrifuge tube at room temperature and mix:				
	Entry clone (50-150 ng) Destination vector (150 ng/µl) TE buffer, pH 8.0	1-7 μl 1 μl to 8 μl			
	 Thaw on ice the LR Clonase[®] II Enzyme Mix for about 2 minutes. Vortex the LR Clonase[®] II Enzyme Mix briefly twice (2 seconds each time). 				
	3. To each sample (Step 1, above), add 2 μl of LR Clonase [®] II Enzyme Mix to the reaction and mix well by vortexing briefly twice. Microcentrifuge briefly.				
	4. Return LR Clonase [®] II Enzyme Mix to -20°C or -80°C storage.				
	5. Incubate reactions at 25°C for 1 hour.				
	 Add 1 μl of the Proteinase K soluti terminate the reaction. Vortex bries 37 C for 10 minutes. 				
Transfor- mation	Note: Any competent cells (as long a F' episome) with a transformation ef transformants/µg may be used.				
	 Add 1 μl of each LR reaction into 50 μl of One Shot[®] Competent <i>E. coli</i>. Add 1 μl of pUC19 DNA (10 ng/ml) to a separate as a positive control for transformation. Incubate on ice for 30 minutes. 				
	2. Heat-shock cells by incubating at 4	12°C for 30 seconds.			
	3. Add 250 μl of S.O.C. Medium and incubate at 37°C for 1 hour with shaking.				
	4. Plate 20 μl and 100 μl of each trans plates.	formation onto selective			
Expected Results	An efficient LR recombination reaction colonies if the entire LR reaction is tra				

Appendix pCMV•SPORT6.1

Map of

The figure below shows the map and features of pCMV•SPORT6.1 pCMV•SPORT6.1 vector. The complete sequence of pCMV•SPORT6.1 is available for downloading from our Web site (www.lifetechnologies.com) or by contacting Technical Support (page 21).

4177 nucleotides

SV40 early polyadenylation signal (c): bases 126-392 M13 Forward (-20) priming site: bases 664-679 T7 promoter/priming site: bases 691-710 attB2: bases 711-735 attB1: bases 807-831 Sp6 promoter/priming site (c): bases 833-850 M13 Reverse priming site (c): bases 861-877 CMV promoter (c): bases 920-1510 pUC origin: bases 1895-2562 Ampicillin (bla) resistance gene (c): bases 2729-3589 bla promoter (c): bases 3590-3641 f1 origin (c): bases 3721-4176

(c) = complementary strand

pCMV•SPORT6.1, Continued

Cloning Site of
pCMV•SPORT6.1The cloning site for pCMV•SPORT6.1 is shown below.
Restriction sites are labeled to indicate the cleavage site.

			M13 Forward	(-20) priming site	T7 pro	moter/priming site
641	GCAGTTTTCC	CAGTCACGAC	GTTGTAAAAC	GACGGCCAGT	GCCTAGCTTA	TAATACGACT
			attB2	Mlu	Hind III	Apa I Xho I
701	CACTATAGGG	accactttgt	ACAAGAAAGC	TGGGTACGCG	TAAGCTTGGG	CCCCTCGAGG
	Xba I	Not I	3'-	A insert	Smal EcoRI	Rsr II PinA II
761	GATACTCTAG	AGCGGCCGCC	C CDNA	-5'	ATCCCGGGAA	TTCCGGACCG
	Kpn I	attB1		Sp6 promote	r/ priming site	_
802	gtaccagcct	GCTTTTTTGT	ACAAACTTGT	TCTATAGTGT	САССТАААТА	ggcctaatgg
	M13 Reverse p	riming site				
862	TCATAGCTGT	TTCCTGTGTG	AAATTGTTAT	CCGCTCCGCG	GCCTAGGCTA	GAGTCCGGAG

Additional Protocols

Checking the Library Titer	The library titer is included on the Certificate of Analysis shipped with the library. If desired, you may check the library titer using the protocol described below.
	1. Thaw an aliquot (one tube) of the Stem Cell cDNA Library.
	2. To 100 μ l of the library aliquot, add 900 μ l SOC medium and mix well. This is the 10 ⁻¹ dilution.
	3. Prepare a series of dilutions with SOC medium as described below:
	For amplified library: Prepare 10 ⁻⁶ , 10 ⁻⁷ , and 10 ⁻⁸ dilutions of the library with SOC medium.
	4. Plate 100 μ l from each dilution on LB plates containing 100 μ g/ml ampicillin.
	5. Incubate the plates at 37°C overnight.
	6. Count the number of colonies on each plate and calculate the titer as described below.
Calculating the Titer	The library titer is calculated using the formula: Titer (cfu/ml) = No. of colonies x dilution factor x 10 For example: The number of colonies on a 10^{-3} plate is 100, then the library titer is $100 \times 10^3 \times 10 = 1 \times 10^6$ cfu/ml.
	· · · · · · · · · · · · · · · · · · ·

Additional Protocols, Continued

Verifying the Insert Size	analysis.	sert size by PCR or restriction enzyme
	PCR	
	Perform colony PCR o page 4 using T7 and S	n 12-24 colonies as described on p6 primers.
	Restriction Enzyme A	nalysis
	 Plate the library to described on page 	isolate individual colonies as 3.
	2. Prepare plasmid D	NA from 12-24 colonies.
	3. Prepare the follow:	ing mix in each tube:
	DNA sample	0.5-1 μg
	10X REact® 3	2 µl
	Not I	10-50 units
	EcoR I	10-50 units
	Sterile water	to 20 μl
	4. Incubate at 37°C fo	or 1-2 hours.

5. Analyze insert size on a 1% agarose gel using appropriate DNA markers.

Isolating Plasmid DNA

Materials Needed	• • • • • • • • •	Terrific Broth (page 19 for a recipe) Stock ampicillin solution (~100 mg/ml) Buffer I with RNAse (page 19 for a recipe) Buffer II (page 20 for a recipe) 7.5 M ammonium acetate, chilled Isopropanol, chilled Phenol:Chloroform:Isoamyl alcohol (25:24:1) 70% ethanol
Preparing dsDNA from a Plasmid cDNA Library	1. 2.	Inoculate 100 ml Terrific Broth containing 100 μ g/ml ampicillin with 2.5 x 10 ⁶ cells from a primary library or 2.5 x 10 ⁹ cells from an amplified library in a 500-ml flask. Incubate the culture for 14-20 hours for an amplified library and 22-24 hours for a primary library at 30°C with shaking at 275 rpm. Clones are prone to deletions when the culture is grown at > 30°C.
	3.	Read the A_{590} of the culture. For accurate A_{590} determination, dilute the cells 1:10-1:20, such that the observed value is between 0.2-0.8.
	4.	Process ~ 500 OD ₅₉₀ units in two 50 ml centrifuge tubes.
	5.	Centrifuge the tubes at $4800 \times g$ for 15 minutes at 4° C. Discard the supernatant. If desired the cell pellet can be stored at -80° C until ready for use.
	6.	Resuspend the cell pellets in a total volume of 10 ml Buffer I with RNAse (cells must be < 50 OD units/ml).
	7.	Add 10 ml of Buffer II to the resuspended cells. Invert the tubes to mix the cells and incubate for 5 minutes at room temperature. Do not exceed 5 minutes.
	8.	Add 10 ml cold 7.5 M ammonium acetate. Invert tubes to mix and incubate for 10 minutes on ice.
	9.	Centrifuge the tubes at 3,000 x g for 15 minutes at 4°C. Pour the supernatant through cheesecloth or a clean, DNase-free, porous filter into a fresh 50-ml centrifuge tube. You should have ~25 ml supernatant in the tube. Avoid the white flocculent material. Turn to the next page for the remainder of the procedure.

Isolating Plasmid DNA, Continued

Preparing dsDNA from a Plasmid cDNA Library, continued	11. 12.	Add an equal volume of cold isopropanol to the tube, mix well, and centrifuge the tubes at 3,000 x g for 15 minutes at 4°C. Discard the supernatant. Resuspend the cell pellet in 1 ml of Buffer I with RNAse and transfer to a microcentrifuge tube. Centrifuge the tubes at 14,000 x g for 1 minute at 4°C. Transfer the supernatant to a fresh microcentrifuge tube Incubate the tube at 37°C for 10 minutes. Incubate the tubes at 65 °C for 5 minutes. Split each sample into two equal parts (~ 500 µl each) in 1.5-ml microcentrifuge tubes and precipitate DNA (below).
Extracting and Precipitating	1.	Add an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) to each sample from Step 13, above, and vortex the tubes for ~1 minute.
DNA	2.	Centrifuge the tubes at 14,000 x g for 5 minutes at room temperature.
	3.	Avoiding the interface, transfer 450 µl of the upper (aqueous) phase to a fresh microcentrifuge tube.
	4.	Repeat the phenol:chloroform:isoamyl alcohol extraction at least twice. If an interface remains, repeat Steps 1-4 until the supernatant is clear.
	5.	Add an equal volume (~450 µl) of chilled isopropanol to each tube. Centrifuge the tubes at 14,000 x g for 15 minutes at 4°C. Discard the supernatant.
	6.	Add 500 μ l 70 % ethanol to each tube. Centrifuge the tubes at 14,000 x g for 5 minutes at 4°C. Discard the supernatant.
	7.	Dry the pellet for 10 minutes at room temperature.
	8.	Completely dissolve the two pellets in 200 μ l TE buffer. The plasmid DNA library concentration must be approximately 1 μ g/ μ l.
	9.	Store the DNA at -20°C.

Recipes

Terrific Broth	1.	Dissolve the following reagents in 800 ml distilled water:		
		Tryptone Yeast Extract Glycerol	12 g 24 g 4 ml	
	2.	Mix well and adjust the volu water.	ume to 900 ml with distilled	
	3.	Autoclave on liquid cycle for solution to cool to ~55°C.	r 20 minutes. Allow	
	4.	Dissolve the following reage water:	ents in 80 ml of distilled	
		KH2PO4 (monobasic) K2HPO4 (dibasic)	2.3 g 12.5 g	
	5.	Mix well and adjust the volu water.	ume to 100 ml with distilled	
	6.	Autoclave on liquid cycle for 20 minutes. Allow solution to cool to ~55°C. Mix this solution with the solution prepared in Step 3.		
	7.	After the media is cooled, ad concentration.	ld antibiotic to the desired	
	8.	Store at 4°C.		
Buffer I with RNAse	15 mM Tris-HCl, pH 8.0 10 mM EDTA 100 μg/ml RNAse A 1200 U/ml RNAse T1			
	1.	To prepare 1 liter Buffer I, m	ix the following:	
		1 M Tris-HCl, pH 8.0 0.5 M EDTA Sterile water	15 ml 20 ml to 1000 ml	
	2.	Mix well and store at room t	emperature.	
	3.	Prepare 50 ml fresh Buffer I	with RNAse as follows:	
		Buffer I (Step 2)	50 ml	
		RNAse T1 (1200 units/ μ l)	50 μl 500 μl	
	4	RNAse A (10 mg/ml)	500 μl	
	4.	Mix well and store on 4°C un RNAse for preparing DNA,		

Recipes, Continued

Buffer II	0.2 M NaOH 1% SDS		
	1.	To prepare 50 ml Buffer II, mix	the following:
		10% SDS 10 N NaOH Sterile water	5 ml 1 ml to 50 ml
	2.	Mix well and store at room tem for preparing DNA, page 17.	perature. Use Buffer II

Technical Support

Obtaining Support	For the latest services and support information for all locations, go to www.lifetechnologies.com .	
	At the website, you can:	
	 Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities 	
	• Search through frequently asked questions (FAQs)	
	 Submit a question directly to Technical Support (techsupport@lifetech.com) 	
	 Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents 	
	• Obtain information about customer training	
	Download software updates and patches	
Safety Data Sheets (SDS)	Safety Data Sheets (SDSs) are available at www.lifetechnologies.com/support.	
Certificate of Analysis	The Certificate of Analysis provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on our website. Go to www.lifetechnologies.com/support and search for the Certificate of Analysis by product lot number, which is printed on the box.	

Technical Support, Continued

Limited Product Warranty	Life Technologies and/or its affiliate(s) warrant their products as set forth in the Life Technologies General Terms and Conditions of Sale found on the Life Technologies web site at www.lifetechnologies.com/termsandconditions. If you have any questions, please contact Life Technologies at
	www.lifetechnologies.com/support.

Purchaser Notification

Product Use by European Customers	These cells are genetically modified and contain the pUC- derived plasmid pCMV•SPORT 6.1. As a condition of sale, this product must be used only according to applicable local legislation and guidelines, including EC Directive 90/219/EEC on the contained use of genetically modified organisms.
Limited Use Label License No. 358: Research Use Only	The purchase of this product conveys to the purchaser the limited, non-transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial applications of any kind, including, without limitation, quality control and commercial services such as reporting the results of purchaser's activities for a fee or other form of consideration. For information on obtaining additional rights, please contact outlicensing@lifetech.com or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.

Gateway[®] Clone Distribution Policy

Introduction	The information supplied in this section is intended to provide clarity concerning Life Technologies' policy for the use and distribution of cloned nucleic acid fragments, including open reading frames, created using Life Technologies' commercially available Gateway [®] Technology.
Gateway [®] Entry Clones	Life Technologies understands that Gateway [®] entry clones, containing <i>att</i> L1 and <i>att</i> L2 sites, may be generated by academic and government researchers for the purpose of scientific research. Life Technologies agrees that such clones may be distributed for scientific research by non-profit organizations and by for-profit organizations without royalty payment to Life Technologies.
Gateway [®] Expression Clones	Life Technologies also understands that Gateway [®] expression clones, containing <i>att</i> B1 and <i>att</i> B2 sites, may be generated by academic and government researchers for the purpose of scientific research. Life Technologies agrees that such clones may be distributed for scientific research by academic and government organizations without royalty payment to Life Technologies. Organizations other than academia and government may also distribute such Gateway [®] expression clones for a nominal fee (\$10 per clone) payable to Life Technologies.
Additional Terms and Conditions	We would ask that such distributors of Gateway [®] entry and expression clones indicate that such clones may be used only for research purposes, that such clones incorporate the Gateway [®] Technology, and that the purchase of Gateway [®] Clonase [®] from Life Technologies is required for carrying out the Gateway [®] recombinational cloning reaction. This should allow researchers to readily identify Gateway [®] containing clones and facilitate their use of this powerful technology in their research. Use of Life Technologies' Gateway [®] Technology, including Gateway [®] clones, for purposes other than scientific research may require a license and questions concerning such commercial use should be directed to Life Technologies' licensing department at 760-603-7200.

- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994). Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience).
- Kertbundit, S., Greve, H.D., Deboeck, F., Montagu, M.V., and Hernalsteens, J.P. (1991) *Proc. Natl. Acad. Sci. USA*, *88*, 5212.
- Kriegler, M. (1990). Gene Transfer and Expression: A Laboratory Manual (New York: Stockton Press).
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Second Edition (Plainview, New York: Cold Spring Harbor Laboratory Press).

©2012 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. TRIzol[®] is a registered trademark of Molecular Research Center, Inc.

LIFE TECHNOLOGIES CORPORATION AND/OR ITS AFFILIATE(S) DISCLAIM ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. TO THE EXTENT ALLOWED BY LAW, IN NO EVENT SHALL LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF.

Notes

Notes

Notes

Headquarters 5791 Van Allen Way | Carlsbad, CA 92008 USA Phone +1 760 603 7200 | Toll Free in USA 800 955 6288

For support visit www.lifetechnologies.com/support or email techsupport@lifetech.com

www.lifetechnologies.com

