

TA Cloning® Kit

Catalog Numbers K2000-01, K2000-40, K2020-20, K2020-40, K2030-01 K2030-40, K2040-01, and K2040-40

Publication Number MAN0000008 Revision 4.00

For research use only. Not for use in diagnostic procedures.

Contents

Contents	iii
Kit Contents and Storage	iv
Introduction	1
Product Overview	1
Experimental Outline	2
Methods	3
Produce PCR Products	3
Clone into pCR [®] 2.1	4
Transform Competent Cells	
Analyze Transformants	8
Perform the Self-Ligation Reaction	9
Troubleshooting	
Appendix	13
Perform the Control Reactions	
Add 3´ A-Overhangs	15
Recipes	16
Map and Features of pCR [®] 2.1	
Accessory Products	
Technical Support	20
Purchaser Notification	21
References	22

Kit Contents and Storage

Shipping and storage	The TA Cloning [®] Kits are shipped on dry ice and contain a box of TA Cloning [®] Reagents (Box 1) and a box of One Shot [®] Competent Cells (Box 2). Catalog nos. K2020-20 and K2020-40 are not supplied with One Shot [®] Competent Cells. Store Box 1 at –30°C to –10°C in a non-frost-free freezer and Box 2 at –85°C to –68°C.			
Type of kits	This manual is supplied with the following ki	its.		
	Kit	Quantity	Cat. no.	
	TA Cloning [®] Kit	20 reactions	K2020-20	
		40 reactions	K2020-40	
	TA Cloning [®] Kit with One Shot [®] INVαF´	20 reactions	K2000-01	
	Chemically Competent E. coli	40 reactions	K2000-40	
	TA Cloning [®] Kit with One Shot [®] TOP10F [~]	20 reactions	K2030-01	
	Chemically Competent E. coli	40 reactions	K2030-40	
	TA Cloning [®] Kit with One Shot [®] TOP10	20 reactions	K2040-01	
	Chemically Competent E. coli	40 reactions	K2040-40	
Intended use	For research use only. Not for use in diagn	ostic procedures.		

Kit Contents and Storage, Continued

TA Cloning[®] reagents

TA Cloning[®] reagents (Box 1) are listed below. Note that the user must supply *Taq* Polymerase. Forty reaction kits are supplied as two 20 reaction kits. **Store Box 1 at –30°C to –10°C.**

Component	Composition	Amount
pCR [®] 2.1, linearized	25 ng/μL in 10 mM Tris- HCl, 1 mM EDTA, pH 8	5 × 10 μL
ExpressLink [™] T4 DNA Ligase	5.0 Weiss units/µL	25 μL
5X ExpressLink™ T4 DNA Ligase Buffer	5X T4 DNA Ligase Buffer (50 mM Tris-HCl, pH 7.6 , 50 mM MgCl ₂ 5 mM ATP, 5 mM dithiothreitol, 25 % (w/v) polyethylene glycol-8000)	200 µL
10X PCR Buffer	100 mM Tris-HCl, pH 8.3 (at 42°C) 500 mM KCl 25 mM MgCl ₂ 0.01% gelatin	100 μL
50 mM dNTPs	12.5 mM dATP 12.5 mM dCTP 12.5 mM dGTP 12.5 mM dTTP (adjusted to pH 8.0)	10 µL
Control DNA Template	0.1 μg/μL in 10 mM Tris- HCl, 1 mM EDTA, pH 8	10 μL
Sterile Water	Deionized, autoclaved water	1 mL
Control PCR Primers	0.1 μg/μL each in 10 mM Tris-HCl, 1 mM EDTA, pH 8	10 μL

Kit Contents and Storage, Continued

One Shot[®] The following table describes the items included in the One Shot® Competent Cell Kit. Forty reaction kits are supplied as two 20 reaction kits. reagents Note: Cat. nos. K2020-20 and K2020-40 are not supplied with competent cells. The transformation efficiency for TOP10F' and TOP10 cells is 1×10^9 cfu/µg DNA. The transformation efficiency for INV α F' is 1 × 10⁸ cfu/µg DNA. Store competent cells at -85°C to -68°C. Component Composition Amount S.O.C. Medium 2% Tryptone 6 mL (may be stored at room 0.5% Yeast Extract temperature or 4°C) 10 mM NaCl 2.5 mM KCl 10 mM MgCl₂ 10 mM MgSO₄ 20 mM glucose (dextrose) INVαF', TOP10F', or TOP10 cells $21 \times 50 \ \mu L$ pUC19 Control DNA $10 \text{ pg/}\mu\text{L}$ in 5 mM Tris-HCl, 50 µL 0.5 mM EDTA, pH 8 Genotype of F´ endA1 recA1 hsdR17 (rk⁻, mk⁺) supE44 thi-1 gyrA96 relA1 $\phi80 lacZ\Delta M15$ INVαF $\Delta(lacZYA-argF)U169 \lambda^{-}$ Genotype of F' [lacIq Tn10 (Tet^R)] mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80lacZ Δ M15 Δ lacX74 recA1 TOP10F² araD139 ∆(ara-leu)7697 galU galK rpsL (Str^R) endA1 nupG Genotype of F⁻ mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-**TOP10** leu)7697 galU galK rpsL (Str^R) endA1 nupG

Introduction

Product Overview

Purpose	The TA Cloning [®] Kit with pCR [®] 2.1 provides a quick, one-step cloning strategy for the directly inserting a PCR product into a plasmid vector.		
Advantages	Using the TA Cloning [®] Kit:		
	 Eliminates any enzymatic modifications of the PCR product 		
	Does not require the use of PCR primers that contain restriction sites		
How TA Cloning [®] works	<i>Taq</i> polymerase has a nontemplate-dependent activity that adds a single deoxyadenosine (A) to the 3' ends of PCR products. The linearized vector supplied in this kit has single 3' deoxythymidine (T) residues. This allows PCR inserts to ligate efficiently with the vector.		
Diagram	The diagram below shows the concept behind the TA Cloning [®] method.		
	Vector 5' A Product 5' A Vector 3' 5' 3' 5' Vector		

Thermostable polymerases containing extensive 3′ to 5′ exonuclease activity, such as Platinum[®] *Pfx*, do not leave 3′ A-overhangs. PCR products generated with *Taq* polymerase have a high efficiency of cloning in the TA Cloning[®] system because the 3′ A-overhangs are not removed. However, if you use a proofreading polymerase or wish to clone blunt-ended fragments, you can add 3′ A-overhangs by incubating with *Taq* at the end of your cycling program. See page 15 for a protocol.

Alternatively, you may want to try the Zero Blunt[®] PCR Cloning Kit (see page 19 for ordering information). This kit offers efficient cloning of blunt-end PCR products generated using thermostable, proofreading polymerases. For more information, go to **www.lifetechnologies.com/support**_or contact Technical Support (page 20).

Experimental Outline

Introduction To clone your gene of interest into pCR[®]2.1, you must first generate a PCR product. The PCR product is ligated into pCR[®]2.1 and transformed into competent cells. Since the PCR product can ligate into the vector in either orientation, individual recombinant plasmids need to be analyzed to confirm proper orientation. The correct recombinant plasmid is then purified for further subcloning or characterization.

Flow chart The table below describes the major steps necessary to clone your gene of interest into pCR[®]2.1.

Step	Action	Page
1	Amplify your PCR product using <i>Taq</i> polymerase and your own primers and parameters.	3
2	Ligate the PCR product into pCR [®] 2.1.	4
3	Transform your ligation into competent <i>E. coli</i> .	5–7
4	Select colonies and isolate plasmid DNA. Analyze plasmid DNA for the presence and orientation of the PCR product by restriction enzyme digestion or sequencing.	8

When using the TA Cloning[®] Kit for the first time, we recommend that you perform the control reactions to help you evaluate your results (pages **Error! Bookmark not defined.**).

Methods

Produce PCR Products

Guidelines for PCR	Generally 10–100 ng of DNA is sufficient to use as a template for PCR. If amplifying a pool of cDNA, the amount needed will depend on the relative abundance of the message of interest in your mRNA population. For optimal ligation efficiencies, we recommend using no more than 30 cycles of amplification.		
Materials supplied	• DNA template and primers for PCR product		
by the user	• <i>Taq</i> polymerase and appropriate 10X PCR buffer (see page 19 for ordering information)		
	• Thermocycler		
Polymerase mixtures	If you wish to use a mixture containing <i>Taq</i> polymerase and a proofreading polymerase, <i>Taq</i> must be in excess of a 10:1 ratio to ensure the presence of 3' A-overhangs on the PCR product. We recommend using Platinum [®] <i>Taq</i> DNA Polymerase High Fidelity (see page 19 for ordering information).		
	If you use polymerase mixtures that do not have enough <i>Taq</i> polymerase or a proofreading polymerase only, you can add 3' A-overhands using the method on page 15.		
Produce PCR	Perform the PCR in a 50 µL volume containing:		
products	DNA Template 10–100 ng		
	10X PCR Buffer 5 µL		
	50 mM dNTPs $0.5 \mu \text{L}$		
	Primers 1 µM each		
	Sterile water to a total volume of 49 µL		
	Taq Polymerase 1 unit		
	Total Volume 50 µL		
Gel purification	If you do not obtain a single, discrete band from the PCR, you may gel-purify your fragment before proceeding. Take special care to avoid sources of nuclease contamination and long exposure to UV light. Alternatively, you may optimize your PCR to eliminate multiple bands and smearing (Innis <i>et al.</i> , 1990). The PCR Optimizer [™] Kit (see page 19 for ordering information) can help you optimize your PCR. Contact Technical Support for more information (page 20).		

Clone into pCR[®]2.1

Clone into pCR[®]2.1, Continued

Notes about incubation time

Cloning efficiency can be optimized by changing incubation time and altering the vector to insert ratio. In the tables below, the ligation reactions were performed using a 1:1 vector to insert ratio (**Table 1**) or using a 1:3 vector to insert ratio, which was achieved by reducing the pCR[®] 2.1 vector concentration to 25ng (**Table 2**).

Ligation reactions were incubated at room temperature for 15 minutes, 30 minutes and 1 hour, transformed into One Shot[®] Top10 cells, and 50 µL plated for blue/white screening. The data at each time point shows the total colony number and percentage of white colonies for 3 replicates.

Table 1 - Vector to insert Ratio 1:1		Table 2 - Vector to insert Ratio 1:3			
Time	Total Colonies	% White	Time	Total Colonies	% White
15 min	312 ± 137	75±6	15 min	141 ± 43	75±16
30 min	315 ± 23	70 ± 4	30 min	160 ± 81	74± 8
60 min	312 ± 141	75± 9	60 min	176 ±36	82±3

Transform Competent Cells

Introduction	After ligating your insert into pCR [®] 2.1, you are ready to transform the construct into competent <i>E. coli</i> . One Shot [®] cells are provided with Cat. nos. K2000-01, K2000-40, K2030-01, K2030-40, K2040-01, and K2040-40 to facilitate transformation. A protocol to transform One Shot [®] cells is provided in this section. To transform another competent strain, refer to the manufacturer's instructions.		
Note	INV α F´ and TOP10 <i>E. coli</i> do not express the <i>lac</i> repressor. You may express your product from pCR [®] 2.1 in the absence of IPTG due to the presence of the <i>lac</i> promoter. IPTG will not have any effect on INV α F´ or TOP10 cells.		
	TOP10F' does express the <i>lac</i> repressor (<i>lac</i> I ^q), which will repress transcription from the <i>lac</i> promoter. To perform blue-white screening for inserts, you must add IPTG to your plates to express LacZ α .		
<i>E. coli</i> host strain	You may use any <i>recA</i> , <i>endA E</i> . <i>coli</i> strain including TOP10, TOP10F', INV α F', DH5 α^{M} , or equivalent for transformation. Other strains are suitable. Refer to page 19 for a list of other available competent <i>E</i> . <i>coli</i> .		
- DE	If you amplified the PCR product from an ampicillin-resistant plasmid, use kanamycin to select for transformants containing your pCR [®] 2.1 construct. Selecting with kanamycin will prevent contamination of the transformation reaction by the original ampicillin-resistant plasmid.		
Materials supplied by the user	In addition to general microbiological supplies (e.g. plates, spreaders), you will need the following reagents and equipment.		
	• Chemically competent <i>E. coli</i> suitable for transformation		
	• S.O.C. medium (warmed to room temperature)		
	• Positive control, optional (e.g. pUC19)		
	 LB plates containing 50 μg/mL kanamycin or 100 μg/mL ampicillin (two for each transformation) 		
	• 42°C water bath		
	• 37°C shaking and non-shaking incubator		

Transform Competent Cells, Continued

Prepare for transformation	• Equilibrate a water bath to 42°C.			
transformation	• Bring the S.O.C. medium to room temperature.			
	 If you are using INVαF´ or TOP10 cells, equilibrate LB plates containing antibiotic at 37°C for 30 minutes. Spread each plate with 40 µL of 40 mg/mL X-Gal. Let the liquid soak into the plates. 			
	• If you are using TOP10F' cells, equilibrate LB plates containing antibiotic at 37° C for 30 minutes. Spread 40 μ L each of 100 mM IPTG and 40 mg/mL X-Gal onto the plates. Let the liquid soak into the plates.			
One Shot [®] transformation	Follow the protocol below to transform One Shot [®] Competent Cells. To transform another strain, refer to the manufacturer's instructions.			
protocol	1. Centrifuge vials containing the ligation reactions briefly and place them on ice.			
	2. Thaw, on ice, one 50 μL vial of frozen One Shot [®] Competent Cells for each transformation.			
	 Pipet 2 μL of each ligation reaction directly into the vial of competent cells and mix by stirring gently with the pipette tip. 			
	4. Incubate the vials on ice for 30 minutes. Store the remaining ligation mixtures at -20° C.			
	5. Heat shock the cells for 30 seconds at 42°C without shaking. Immediately transfer the vials to ice.			
	6. Add 250 μL of room temperature S.O.C. medium to each vial.			
	7. Shake the vials horizontally at 37°C for 1 hour at 225 rpm in a shaking incubator.			
	8. Spread 10–200 μ L from each transformation vial on LB agar plates containing X-Gal and 50 μ g/mL of kanamycin or 100 μ g/mL ampicillin. Be sure to also include IPTG if you are using TOP10F' cells. We recommend plating 10–50 μ L for TOP10F' or TOP10 cells and 50–200 μ L for INV α F' cells.			
	Note : Be sure to plate two different volumes to ensure that at least one plate has well-spaced colonies. For plating small volumes, add 20 μ L of S.O.C. to allow even spreading.			
	 Incubate plates overnight at 37°C. Transfer plates to 4°C for 2–3 hours to allow for proper color development. 			
Q Important	Transformed INV α F ['] cells may appear very small after overnight growth when compared to other <i>E. coli</i> strains. The transformants may need to grow an additional 2–3 hours before selecting colonies for analysis.			
Expected results	For an insert size of 400–700 bp, you should obtain 50–200 colonies per plate depending on the volume plated. Of these, approximately 80% should be white on X-Gal plates (INV α F [′] and TOP10) or X-Gal/IPTG plates (TOP10F [′]). Note that ligation efficiency depends on insert size. As insert size increases, the efficiency will decrease.			

Analyze Transformants

Analyze positive	1. Pick at least 10 white colonies for plasmid isolation and restriction analysis.			
clones	2. Grow colonies overnight in 2–5 mL LB broth containing either 100 μ g/mL of ampicillin or 50 μ g/mL kanamycin.			
	 Isolate and analyze the plasmid by restriction mapping or sequencing for orientation of the insert. We recommend using the PureLink[®] HQ Mini Plasmid Purification Kit for purifying your plasmid DNA (see page 19 for ordering information). 			
Sequence your insert	If you wish to sequence your insert in pCR [®] 2.1, you may use the M13 Reverse Primer to sequence into your insert from the <i>lac</i> promoter. To sequence into the insert from the <i>lac</i> Z α fragment, you can use either the T7 Promoter Primer or the M13 Forward Primer. Refer to the diagram on page 17 for the primer sequences and location of the primer binding sites. For information about our custom primer synthesis service, go to www.lifetechnologies.com/support or contact Technical Support (page 20).			
Q Important	If you have problems obtaining transformants or the correct insert, perform the control reactions described on pages 13–14. These reactions will help you troubleshoot your experiment. Refer to the Troubleshooting section, page 9 for additional tips.			
Long-term storage	After identifying the correct clone, purify the colony and prepare a glycerol stock for long-term storage. We recommend that you store a stock of plasmid DNA at -20° C, using the following procedure.			
	 Streak the original colony on LB plates containing 100 μg/mL ampicillin or 50 μg/mL kanamycin. 			
	2. Isolate a single colony and inoculate into 1–2 mL of LB containing 100 μ g/mL ampicillin or 50 μ g/mL kanamycin.			
	3. Grow until the culture reaches stationary phase.			
	4. Mix 0.85 mL of the culture with 0.15 mL of sterile glycerol and transfer to a cryovial.			
	5. Store at -80° C.			

Perform the Self-Ligation Reaction

Introduction	tha tha pro Cor		r longer periods or repeatedly frozen and ng in "false" white positives. Follow the reaction and transform One Shot [®]	
Procedure	1.	Set up the 10 µL self-ligation reaction a	as follows:	
		Water	5 μL	
		5X T4 DNA Ligase Reaction Buffer	2 μL	
		pCR [®] 2.1 vector (25 ng/µL)	2 μL	
		ExpressLink™ T4 DNA Ligase (5 units	<u>) 1 µL</u>	
		Total Volume	10 μL	
	2.	Incubate the reaction at room tempera before transformation.	ture for 1 hour. Place the reaction on ice	
	3.	. Thaw, on ice, one 50 μ L vial of frozen One Shot [®] Competent Cells for each transformation.		
	4.	Pipet 1 μ L of the Control Ligation Reaction from step 1 of this procedure directly into the vial of competent cells and mix by stirring gently with the pipette tip.		
	5.	Incubate the vial on ice for 30 minutes. Store the remainder of the ligation mixture at -20° C.		
	6.	Heat shock the cells for 30 seconds at 42°C without shaking. Immediately transfer the vials to ice.		
	7.	Add 250 µL of room temperature S.O.0	C. medium to the vial.	
	8.	Shake the vial horizontally at 37°C for	1 hour at 225 rpm in a shaking incubator.	
	9.	9. Spread 50 μ L from the vial on a labeled LB agar plate containing 50 μ g/mL of kanamycin or 100 μ g/mL ampicillin and X-Gal. Be sure to include IPTG if you are using TOP10F'.		
		Incubate the plates overnight at 37°C.		
Expected results	less tim vec	u should expect about 5–25 blue colonie s than 5% white colonies which result fr ie, the 3´T-overhangs will degrade, cause ctor. This can cause a frameshift of the <i>la</i> nt blue colony with no insert.	sing a blunt-end self-ligation of the	

Troubleshooting

Culturing cells

If you do not obtain the results you expect, use the following table to troubleshoot your experiment. We recommend performing the control reactions (pages 14) to help you evaluate your results.

Observation	Cause	Solution
No colonies obtained from transformation	Bacteria were not competent.	Use the pUC19 control vector included with the One Shot [®] Kit to test transformation efficiency.
	Incorrect concentration of antibiotic on plates or the plates are too old.	Use 100 μ g/mL of ampicillin or 50 μ g/mL kanamycin. Use fresh ampicillin plates (less than 1 month old).
White colonies do not have insert	Single 3' T-overhangs on the vector degraded.	Use another tube of vector. Avoid storing the vector for longer than 6 months or subjecting it to repeated freeze/thaw cycles. Check the vector by performing the Self-Ligation Reaction, page 9.
Only white colonies obtained	No IPTG or X-Gal in plates.	Be sure to include X-Gal for blue/white screening and both IPTG and X-Gal if using TOP10F ⁻ .
Majority of colonies are blue or light blue with very few white colonies	The insert does not interrupt the reading frame of the <i>lacZ</i> gene.	If you have a small insert (less than 500 bp), you may have light blue colonies. Analyze blue colonies as they may contain insert.
	Used a polymerase that does not add 3´ A- overhangs.	Do not use proofreading polymerases such as Platinum [®] <i>Pfx</i> because they do not add 3' A-overhangs. Use <i>Taq</i> polymerase.
	PCR products were gel- purified before ligation.	Gel purification can remove the single 3' A-overhangs. If gel purification is needed, use nuclease-free solutions to purify fragment or optimize your PCR.
	The PCR products were stored for a long period of time before performing the ligation reaction.	Use fresh PCR products. Efficiencies are reduced after as little as 1 day of storage.
	Too much of the amplification reaction was added to the ligation.	The high salt content of PCR reactions can inhibit ligation. Do not use more than 2–3 μL of the PCR reaction in the ligation reaction.
	Incorrect molar ratio of vector:insert used in the ligation reaction.	Estimate the concentration of the PCR product. Set up the ligation reaction with a 1:1 or 1:3 vector:insert molar ratio.

Troubleshooting, Continued

Observation	Cause	Solution	
Some colonies have a light blue color or appear white with blue centers	Leaky expression of the <i>lacZ</i> fragment or only a partial disruption of <i>lacZ</i> by the insert.	If you are looking for a smaller size insert, 500 bp or less, analyze these colonies as they may contain insert.	
White colonies or blue colonies of normal size are surrounded by smaller, white colonies	lonies of normal size are ampicillin-sensitive satellite the stock solution of amp colonies. Do not pick the small your plates are both fresh		
White colonies do not grow in liquid culture	Ampicillin-sensitive satellite colonies.	Be sure to pick large white colonies. Be sure the ampicillin is fresh. Use kanamycin to eliminate this problem.	
No results from sequencing	Accidental use of the amplification primers in the kit for sequencing. These are for generating the control PCR product only.	Use the M13 Forward (–20) and Reverse Primers for sequencing. You may also use the T7 promoter primer to sequence into the insert.	
	The T7 primer used was not the right sequence.	Check the sequence of your T7 promoter primer and make sure it matches with the priming site on pCR [®] 2.1.	
	An Sp6 primer was used to sequence inserts in pCR [®] 2.1.	Do not use an Sp6 primer to sequence pCR [®] 2.1. There is no binding site for this primer.	
No PCR product	Either the <i>Taq</i> polymerase is inactive or the conditions for your PCR are not optimal.	Perform the control reactions on pages 14 to test the activity of the <i>Taq</i> polymerase. If <i>Taq</i> polymerase is active, you may need to optimize the conditions for your PCR reaction.	
Low plasmid yield	Cells do not grow well in LB.	Try using S.O.C. medium with the appropriate antibiotic.	

Troubleshooting, Continued

Explanation of control reactions

The following table describes the control reactions that can be performed to troubleshoot your TA Cloning[®] experiment and how to interpret the results from these control reactions.

Control Reaction	Explanation
Self-Ligation	This control reaction shows if pCR [®] 2.1 has lost the 3' T-overhangs. Loss of the T-overhangs results in blunt-end ligation and disruption of the <i>lacZ</i> α reading frame. False white colonies will result. Normally, less than 5% of the colonies should be white.
Transformation Control	Tests the transformation efficiency of the One Shot [®] Competent Cells. The transformation efficiency should be 1×10^8 cfu/µg DNA for INV α F' and 1×10^9 cfu/µg DNA for TOP10 and TOP10F'.
Control PCR Product	Tests the PCR reagents including <i>Taq</i> polymerase.
Control Ligation Reaction	Tests the ligation reagents and pCR [®] 2.1. Up to 80% or greater white colonies can be produced and these colonies should contain vector with insert.

Appendix

Perform the Control Reactions

Introduction	he co	e recommend perform lp you evaluate results ntrol PCR product usin igation reaction.	s. Performing t	he control reaction	ns involve p	oroducing a
Produce the		e Taq Polymerase and	the protocol b	elow to amplify th	e control P	CR product.
control PCR	1.	Set up the 50 µL PCF	R as follows:			
product		Control DNA Templ	late (100 ng)	1 μL		
		10X PCR Buffer		5 μL		
		50 mM dNTPs		0.5 μL		
		Control PCR Primers 1 µL				
		Water	4	41.5 μL		
		<u>Taq Polymerase (1 u</u>	nit/µL)	<u>1 μL</u>		
		Total Volume		50 µL		
	2.	Amplify using the cycling parameters below:				
		Step	Time	Temperature	Cycles	
		Denaturation	1 minute	94°C		
		Annealing	1 minute	55°C	25	
		Extension	1 minute	72°C		
		Final Extension	7 minutes	72°C	1	
	3.	Remove 10 μL from t discrete 700 bp band Reaction , page 14.				

Perform the Control Reactions, Continued

Control Ligation Reaction	Using the control PCR product produced from Produce the Control PCR Product on page 13, set up the following ligation reaction. In general, 1 μ L of the Control PCR Product should be sufficient for ligation. Alternatively, you may use the formula given on page 4 to estimate the amount of PCR product to ligate with 50 ng of pCR [®] 2.1.		
	1. Set up the 10 μ L Control Ligation Reaction as follows:		
	Water 4 µL		
	5X T4 DNA Ligase Reaction Buffer $2 \mu L$		
	pCR [®] 2.1 vector (25 ng/ μ L) 2 μ L		
	Control PCR Product 1 µL		
	<u>ExpressLink™ T4 DNA Ligase (5 units) 1 μL</u>		
	Total Volume 10 μL		
	2. Incubate the Control Ligation Reaction at room temperat notes on next page).	ure for 1 hour (see	
	 Transform 1 μL of the Control Ligation Reaction into one vial of One Shot[®] Competent Cells or into another suitable competent <i>E. coli</i> strain. Plate 10–50 μL of each transformation mix on LB agar plates containing 50 μg/mL kanamycin with X-Gal (and IPTG for TOP10F' cells). 		
	1. Incubate plates overnight at 37°C.		
Transformation control	TA Cloning [®] Kits supplied with One Shot [®] Competent Cells with pUC19 plasmid for use as a transformation control. Transformation with 10 pg of pUC19 using the protocol on page 7 transformation mixture on LB plates containing 100 μ g/mL a transformation efficiency should be 1 × 10 ⁹ cfu/ μ g DNA for T cells and 1 × 10 ⁸ cfu/ μ g DNA for INV α F ⁻ .	nsform one vial of One . Plate 10–50 μL of the .mpicillin. The	
Expected results	The Control Ligation Reaction should produce approximately depending on the incubation time and vector to insert ratio (stime, the 3 [°] T-overhangs will degrade, causing an increase in background white colonies (those without inserts). The number colonies should not exceed 10% (see Perform the Self-Ligation this occurs, use another vial of pCR [®] 2.1 and avoid repeated frequencies of the second se	see next page). Over the number of per of background on Reaction , page 9). If	

Add 3´ A-Overhangs

Introduction	Direct cloning of DNA amplified by proofreading polymerases into pCR [®] 2.1 is often difficult due to very low cloning efficiencies. These low efficiencies are caused by the 3' to 5' exonuclease proofreading activity that removes the 3' A-overhangs necessary for TA Cloning [®] . We have developed a simple method to clone these blunt-ended fragments. If you routinely clone blunt PCR products, we recommend the Zero Blunt [®] PCR Cloning Kit (Cat. nos. K2700-20 and K2750-20) for optimal cloning of blunt PCR products.				
Materials supplied by the user	 <i>Taq</i> polymerase A heat block equilibrated to 72°C 				
	Phenol-chloroform				
	• 3 M sodium acetate				
	• 100% ethanol				
	• 80% ethanol				
	• TE buffer				
Procedure	 After amplifying with a proofreading polymerase, place vials on ice and add 0.7–1 unit of <i>Taq</i> polymerase per tube. Mix well. It is not necessary to change the buffer. 				
	2. Incubate at 72°C for 8–10 minutes (do not cycle).				
	3. Extract <i>immediately</i> with an equal volume of phenol-chloroform.				
	4. Add 1/10 volume of 3 M sodium acetate and 2X volume of 100% ethanol.				
	5. Centrifuge at maximum speed for 5 minutes at room temperature to precipitate the DNA.				
	6. Remove the ethanol, rinse the pellet with 80% ethanol, and allow to air dry.				
	 Resuspend the pellet in TE buffer to the starting volume of the DNA amplification reaction. The DNA amplification product is now ready for ligation into pCR[®]2.1. 				

Recipes

LB (Luria-Bertani)	Composition:				
medium and plates	1.0% Tryptone 0.5% Yeast Extract 1.0% NaCl pH 7.0				
	1.	For 1 liter, dissolve 10 g tryptone, 5 g yeast extract, and 10 g NaCl in 950 mL deionized water.			
	2.	Adjust the pH of the solution to 7.0 with NaOH and bring the volume up to 1 liter.			
	3.	Autoclave on liquid cycle for 20 minutes at 15 lbs./sq. inch. Allow the solution to cool to 55°C and add antibiotic if needed.			
	4.	Store LB medium at room temperature or at 4°C.			
	LB agar plates				
	1.	Prepare LB medium as above, but add $15~{ m g/L}$ agar before autoclaving.			
	2.	Autoclave on liquid cycle for 20 minutes at 15 lbs./sq. in.			
	3.	After autoclaving, cool to ~55°C, add antibiotic (100 μ g/mL of ampicillin or 50 μ g/mL kanamycin), and pour into 10 cm plates.			
	4.	Let harden, then invert and store the plates at 4°C.			

Map and Features of pCR[®]2.1

Map of pCR[®]2.1 The map of the linearized vector, pCR[®]2.1, is shown below. The arrow indicates the start of transcription for the T7 RNA polymerase. The sequence of pCR[®]2.1 is available at **www.lifetechnologies.com/support** or by contacting Technical Support (page 20).

pUC origin: bases 3134-3807

Map and Features of pCR[®]2.1, Continued

Features of pCR[®]2.1

The following table describes the features of $pCR^{\circledast}2.1.$ All features have been functionally tested.

Feature	Benefit
<i>lac</i> promoter	Allows bacterial expression of the $lacZ\alpha$ fragment for α -complementation (blue-white screening).
<i>lac</i> Zα fragment	Encodes the first 146 amino acids of β -galactosidase. Complementation in <i>trans</i> with the Ω fragment gives active β -galactosidase for blue-white screening.
Kanamycin resistance gene	Allows selection and maintenance in <i>E. coli;</i> useful when cloning products amplified from ampicillin-resistant plasmids.
Ampicillin resistance gene	Allows selection and maintenance in <i>E. coli</i> .
pUC origin	Allows replication, maintenance, and high copy number in <i>E. coli</i> .
T7 promoter and priming site	Allows <i>in vivo</i> or <i>in vitro</i> transcription of anti- sense RNA. Allows sequencing of the insert.
M13 Forward (–20) and M13 Reverse Priming Sites	Allows sequencing of the insert.
f1 origin	Allows rescue of sense strand for mutagenesis and single-strand sequencing.

Accessory Products

Additional products

Reagents supplied with the TA Cloning[®] Kit and other reagents suitable for use with the kit are available separately. Ordering information is provided below.

Item	Quantity	Cat. no.
TA Cloning Dual Promoter Kit	40 reactions	K460040
Platinum [®] Taq DNA Polymerase	100 reactions	10966-018
	250 reactions	10966-026
	500 reactions	10966-034
	5000 reactions	10966-083
Platinum [®] Taq DNA Polymerase High Fidelity	100 units	11304-011
Taq DNA Polymerase, Recombinant	100 units	10342-053
	500 units	10342-020
PureLink® HQ Mini Plasmid Purification Kit	100 reactions	K2100-01
Zero Blunt [®] PCR Cloning Kit	20 reactions	K2700-20
	20 reactions	K2750-20
PCR Optimizer [™] Kit	100 reactions	K1220-01
IPTG	1 g	11529-019
X-gal	100 mg	15520-034
	1 g	15520-018
Bluo-gal	1 g	15519-028
Kanamycin	5 g	11815-024
	25 g	11815-032
Ampicillin	200 mg	11593-019

One Shot[®] competent cells

Chemically Competent *E. coli* are available separately in convenient One Shot[®] formats.

Item	Quantity	Cat. no.
One Shot [®] INVaF´ Chemically Competent	20 reactions	C2020-03
E. coli	40 reactions	C2020-06
One Shot [®] TOP10F´ Chemically Competent	20 reactions	C3030-03
E. coli	40 reactions	C3030-06
One Shot [®] TOP10 Chemically Competent E. coli	20 reactions	C4040-03
	40 reactions	C4040-06
One Shot [®] Mach1 [™] -T1 ^R Chemically Competent <i>E. coli</i>	20 reactions	C8620-03

Technical Support

Obtaining support	 For the latest services and support information for all locations, go to www.lifetechnologies.com/support. At the website, you can: Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities Search through frequently asked questions (FAQs) Submit a question directly to Technical Support (techsupport@lifetech.com) Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents Obtain information about customer training Download software updates and patches
Safety Data Sheets (SDS)	Safety Data Sheets (SDSs) are available at <u>www.lifetechnologies.com/support</u> .
Certificate of Analysis	The Certificate of Analysis provides detailed quality control and product qualification information for each product. Certificates of Analysis are available on our website. Go to <u>www.lifetechnologies.com/support</u> and search for the Certificate of Analysis by product lot number, which is printed on the box.
Limited warranty	Life Technologies Corporation is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about a Life Technologies product or service, contact our Technical Support Representatives. All Life Technologies products are warranted to perform according to specifications stated on the certificate of analysis. The Company will replace, free of charge, any product that does not meet those specifications. <u>This warranty</u> <u>limits the Company's liability to only the price of the product</u> . No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. The Company reserves the right to select the method(s) used to analyze a product unless the Company agrees to a specified method in writing prior to acceptance of the order. Life Technologies makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore the Company makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, report it to our Technical Support Representatives. Life Technologies Corporation shall have no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

Purchaser Notification

Limited Use Label License: Research Use Only The purchase of this product conveys to the purchaser the limited, nontransferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial services of any kind, including, without limitation, reporting the results of purchaser's activities for a fee or other form of consideration. For information on obtaining additional rights, please contact **outlicensing@lifetech.com** or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.

References

General Reference for PCR Technology

Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J. (eds.) (1990) *PCR Protocols: A Guide to Methods and Applications*. Academic Press, Inc., San Diego, CA.

General Molecular Biology Techniques

- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K., eds. (1990) *Current Protocols in Molecular Biology*. Greene Publishing Associates and Wiley-Interscience, New York.
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, second edition, Cold Spring Harbor Laboratory Press, Plainview, New York.

TA Cloning[®] Proces

- Andres, D. A., Seabra, M. C., Brown, M. S., Armstrong, S. A., Smeland, T. E., Cremers, F. P. M., and Goldstein, J. L. (1993) cDNA Cloning of Component A of Rab Geranylgeranyl Transferase and Demonstration of Its Role as a Rab Escort Protein. *Cell* **73**: 1091-1099.
- Bates, M. D., Olsen, C. L., Becker, B. N., Albers, F. J., Middleton, J. P., Mulheron, J. G., Jin, S.-L. C., Conti, M., and Raymond, J. R. (1993) Elevation of cAMP Is Required for Down-regulation, but not Agonistinduced Desensitization, of Endogenous Dopamine D1 Receptors in Opossum Kidney Cells. J. Biol. Chem. 268: 14757-14763.
- Chen, Y., Weeks, J., Mortin, M. A., and Greenleaf, A. L. (1993) Mapping Mutations in Genes Encoding the Two Large Subunits of Drosophila RNA Polymerase II Defines Domains Essential for Basic Transcription Functions and for Proper Expression of Developmental Genes. *Molec. Cell. Biol.* 13: 4214-4222.
- Clark, J. M. (1988) Novel Non-Templated Nucleotide Addition Reactions Catalyzed by Procaryotic and Eucaryotic DNA Polymerases. *Nuc. Acids Res.* **16**: 9677-9686.
- Falls, D. L., Rosen, K. M., Corfas, G., Lane, W. S., and Fischbach, G. D. (1993) ARIA, a Protein that Stimulates Acetylcholine Receptor Synthesis, is a Member of the Neu Ligand Family. *Cell* 72: 801-815.
- Hake, L. E. and Hecht, N. B. (1993) Utilization of an Alternative Transcription Initiation Site of Somatic Cytochrome c in the Mouse Produces a Testis-Specific Cytochrome c mRNA. J. Biol. Chem. 268: 4788-4797.
- Liang, P. and Pardee, A. B. (1992) Differential Display of Eukaryotic Messenger RNA by Means of the Polymerase Chain Reaction. *Science* **257**: 967-973.
- Lin, X.-L., Lin, Y.-Z., Koelsch, G., Gustchina, A., Wlodawer, A., and Tang, J. (1992) Enzymic Activities of Two-chain Pepsinogen, Two-chain Pepsin, and the Amino-terminal Lobe of Pepsinogen. J. Biol. Chem. 267: 17257-17263.

- Mahendroo, M. S., Mendelson, C. R., and Simpson, E. R. (1993) Tissue-specific and Hormonally Controlled Alternative Promoters Regulate Aromatase Cytochrome P450 Gene Expression in Human Adipose Tissue. J. Biol. Chem. **268**: 19463-19470.
- Mallick, C. A., Dudley, E. C., Viney, J. L., Owen, M. J., and Hayday, A. C. (1993) Rearrangement and Diversity of T Cell Receptor β Chain Genes in Thymocytes: A Critical Role for the β Chain in Development. *Cell* **73**: 513-519.
- Mead, D. A., Pey, N. K., Herrnstadt, C., Marcil, R. A., and Smith, L. M. (1991) A Universal Method for the Direct Cloning of PCR Amplified Nucleic Acid. *Bio/Technology* **9**: 657-663.
- Miller, W. H., Kakizuka, A., Frankel, S. Warrell, R. P., DeBlasio, A., Levine, K., Evans, R. M., and Dmitrovsky, E. (1992) Reverse Transcription Polymerase Chain Reaction for the Rearranged Retinoic Acid Receptor α Clarifies Diagnosis and Detects Minimal Residual Disease in Acute Promyelocytic Leukemia. *Proc. Natl. Acad. Sci USA* **89**: 2694-2698.

©2013 Life Technologies Corporation. All rights reserved.

The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.

LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) DISCLAIM ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF.

Notes