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ABSTRACT AND INTRODUCTION

Much attention has been focused on RNA transcript bias. The quality of

isolated mRNA used for RNA-seq and other downstream analyses can

contribute to sample specific bias of transcript abundance. If the library is

prepared from polyA enrichment of degraded RNA or with reverse

transcriptase using oligo dT priming then 3¡positional bias must be

considered1

Isolated total RNA is routinely examined for its quality prior to committing to

costly gene expression analysis. Since total RNA consists of ~85% rRNA,

analysis primarily reflects rRNA quality and the mRNA quality is inferred.

Typically, quality measurements consist of 260/280 nm ratio, 28S/18S rRNA

ratio and capillary electrophoresis fragment analysis or gel-based separation

and imaging methods. These methods which have become industry standards

of quality to generate an RNA score such as RNA integrity number (RIN)

between 0-10 with >8 being generally acceptable for RNA-seq. Generating

RIN score requires experienced technical ability, specialized equipment, as

well as additional cost and time prior to committing to the next step of building

the library for sequencing.

In this presentation we examine the integrity of the RNA using a combination

of specific fluorescent nucleic acid binding dyes which display differential

binding specificity depending on the primary and secondary structure of the

RNA. Presumably those structures change as the quality of RNA changes.

For machine learning, a training data set of data was generated, followed by a

test set of data used to determine accuracy. Data depicting the actual vs.

predicted class are reported in a confusion matrix. Variable of importance

analysis was used to determine the factors most important for predicting

accurate RNA integrity quality (IQ).

The initial determination of accuracy of the machine learning based on test

data, ranged between 92.7 - 95.7% over the entire range of RNA tested

depending on the algorithm used. With further refinement to the machine

learning, RNA IQ had an accuracy of ± 0.65 and ± 0.39 standard deviation

(SD) for IQ range 0 ï10 using the test data set.

The accurate and low SD generated using nucleic acid binding dyes makes for

a quick, simple and easy to use assessment of isolated RNA. The dye binding

and fluorescent measurement is rapid and requires only a few minutes to

generate. The dye/RNA fluorescence based determination of RNA quality was

benchmarked against the industry standard of RIN score generated by

capillary electrophoresis of the Bioanalyzer system (Agilent), Fragment

Analyzer, and standard agarose gel based analysis to determine concordance

and utility of this method.

Technical ability, cost and time investment are minimal allowing for rapid

sample characterization prior to further analysis and commitment to

downstream sequencing steps.

MATERIALS AND METHODS 

Material and equipment for RNA quality and quantitation evaluation depicted in

Figure 1. Bioanalyzer using RNA nanochip and Fragment Analyzer from Agilent

(Santa Clara, CA). OncomineÊImmune Response Research Reagent and Ion

530Ê Chip from Thermo Fisher Scientific (Waltham, MA) . All other material and

reagents from Thermo Fisher Scientific unless noted otherwise.

CONCLUSIONS

ÅMachine learning can accurately predict RNA IQ score and quantitation of test

data when based on surrogate training data used to develop the algorithm.

ÅDifferential binding of RNA binding dyes results in fluorescence signals that reveal

RNA quality over the range of the training data used.

ÅFor training data to better predict RNA quality the input must simulate the changes

that occur in secondary structure that occurs when RNA is degraded.

ÅThe degraded RNA tested did not have significant alteration in gene expression

over intact RNA.

ÅA wider range of RNA degradation will be needed to observe a correlation

between RNA quality and an impact on transcript abundance in RNA sequencing.
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Figure 1: Methods for assessing RNA quality and quantitation 1a. Qubit 4:

fluorescence signals from nucleic acid dyes. 1b. Fragment Analyzer: RQN score

determined by capillary electrophoresis 1c. Bioanalyzer: RIN score determined by

capillary electrophoresis. 1d. 2% agarose E-Gel EX electrophoresis 1e. NanoDrop

UV/vis absorbance
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Figure 2. Predicted vs. actual RNA quality and quantity 

using surrogate data

Figure 2: Correlation between actual and predicted RNA quality and quantity using

surrogate data. Surrogate training data made from mixtures of intact and degraded RNA were used as input

for machine learning. Test data made from similar mixtures were then used to determine the accuracy of

prediction. The correlation between both quality and quantity measurements of the test values vs. predicted

values were the highest observed with Model C. Standard deviation from the actual value is presented for both

RNA quality (SD ± 0.295) (fig 2a.) and RNA quantitation (SD ± 0.016) (fig 2b).

Figure 3. Comparison of quality value of fluorescence

based models and BioAnalyzer RIN score

Figure 3. Various analytical methods used for evaluating quality and quantity of

surrogate data generated from mixtures of RNA. Graph depicts RNA quality compared to perfect

prediction value (fig. 3a). 2% agarose gel showing sample mixtures used for training and test data (fig. 3b) was

analyzed for quality using mathematical Models A and B, and machine learning Model C comparing to Model D,

BioAnalyzer RIN score. Theoretical percentage was used as reference to evaluate the closeness of fit for quality.

Quantitation was determined in Model C machine learning and Model D (BioAnalyzer). Nanodrop was used as

reference standard to evaluate closeness of fit for quantitation. Table is color coded based on percentage from

expected value (fig. 3c). BioAnalyzer does not accurately evaluate mixtures of RNA. Model C machine learning

shows higher correlation between actual and predicted values than seen with other models. The deviation from the

true value is largest at the points of highest and lowest % mixtures of RNA.

Figure 4: Number of occurrences of each concentration in the training data set. Correlation

of predicted vs. actual value can be improved by increasing the occurrence of training data

samples (4a). Histogram of deviation between actual and predicted concentration (4b).

Figure 4. Distribution of training data and deviation from 

prediction

Figure 6. preparation of sequencing library

Figure 6: Preparing and quantitating the library. Prior to running the targeted gene

expression assay on the IonÊnext-generation sequencing (NGS) platform the library is

quantitated using Ion Library Taqman quantification kit. The pan-cancer gene expression

assay targets 398 genes relevant to the tumor microenvironment.

Figure 1. Methods used for assessing RNA quality

Figure 7. Analysis of Oncomine Immune Respond 

Research Assay panel
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SD ± 0.295 SD ± 0.016

Figure 7: OncomineÊ Immune Response Research Assay: Amplicon coverage

chart for intact and degraded RNA (7a). Binned number of reads and Raw Read

Accuracy are equivalent for the two samples of RNA (7b). Two subsets of gene

expression panel showing equivalent levels between intact RNA (J-1) and partially

degraded RNA (NO5-d1). No statistical difference between replicates and samples. The

level of degradation of NO5-d1 was not sufficient to alter gene expression values (7c).

Figure 5.  Characterizing and sequencing of intact and 

partially degraded RNA  

Figure 5: Characterizing RNA prior to downstream applications: Two samples of

total RNA derived from Jurkat cells were characterized and analyzed for differences in

gene expression of the 398 genes in the OncomineÊImmune Response Research

Assay. One sample (J-1) was stored at -80ęCand remained intact while the other sample

(NO5-d1) was stored for an extended period at -20ęCand had partially degraded.

NanoDrop using UV absorbance for quantitation together with BioAnalyzer (5a), Fragment

Analyzer (5b), and the other models using fluorescence signal (table 5d) along with gel

electrophoresis (5c) were used to characterize the material used to prepare the

sequencing library. Correlation between models for RNA quality score is poor.

Correlation between RNA quantity is closer for some of the models.

lane of 

2% gel 

sample 

mixture Model B 

Model C  

machine 

learning

Model D 

RIN

Model C 

(ng/uL)

BioAnalyzer 

quant 

(ng/uL)

NanoDrop 

quant 

(ng/uL)

1 100% 10.18 9.05 9.9 118 136 109
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