thermo scientific

Control the spread of VRE so it doesn't control you

Brilliance[™] VRE

Detection of Vancomycin Resistant Enterococci (VRE)

Brilliance™ VRE Agar is a chromogenic screening plate for the detection of Vancomycin Resistant Enterococci (VRE). The medium provides presumptive identification of Enterococcus faecium and Enterococcus faecalis, direct from clinical samples.

Saves Time

Presumptive identification of vancomycin resistant
 E. faecium and E. faecalis in 24 hours, direct from sample

Convenient & Easy to Use

- Quick and easy screening test, ready-to-use plates with a new semi-opaque background
- Clear differentiation of E. faecium and E. faecalis colonies
- Direct inoculation from faecal sample, swab, isolate or suspension

Selective


 Inhibition of intrinsically resistant E. casseliflavus and E. gallinarum, reduces incidence of false-positive results compared to traditional media, minimising confirmatory testing

Reduces Cost

Early presumptive identification of *E. faecium* and
 E. faecalis allows for appropriate treatment and infection control procedures to be adopted earlier, improving treatment outcomes and the effectiveness of infection control measures

References:

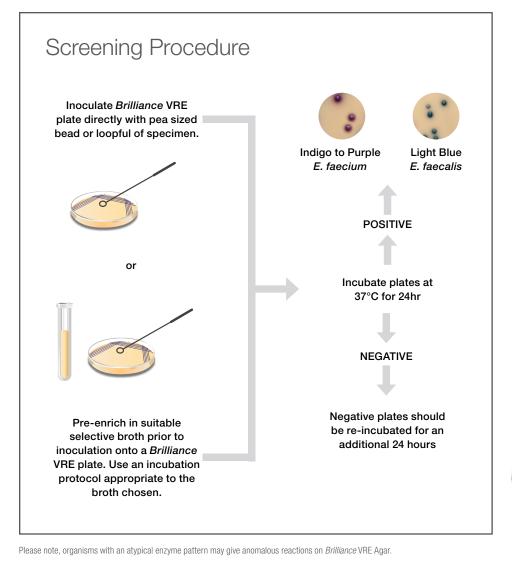
- Bell J.M., Paton J.C., Turnidge J. (1998). Emergence of Vancomycin Resistant Enterococci in Australia: Phenotypic and Genotypic Characteristic of Isolates. J. Clin. Microbiol. 36, 2187-2190.
- Centers for Disease Control and Prevention (2006). Recommendations for Preventing the Spread of Vancomycin Resistance: HICPAC.
- Delmas J., Robin F., Schweitzer C., Lesens O., Bonnet R. (2007). Evaluation of a new chromogenic medium, chromID VRE, for detection of Vancomycin Resistant Enterococci in stool samples and rectal swabs. J. Clin. Microbiol. 45, 2731-2733.
- 4. Data on file at Oxoid, based on growth or inhibition.

Differentiation of vancomycin resistant E. faecium from E. feacalis is achieved through the inclusion of two chromogens that are targeted by specific enzymes: phosphatase and α -galactosidase. The action of these enzymes on the chromogens results in a build-up of colour within the colony. The colour produced depends on which enzymes the organisms possess. The presence of phosphatase enzymes in both E. faecium and E. faecium also produces α -galactosidase, resulting in a mix of blue and pink chromophores within the bacterium producing indigo to purple colonies, which are easily distinguished from the light blue E. feecalis colonies.

Additional antibiotics, in combination with vancomycin, are present to suppress the growth of competing flora including *E. gallinarum* and *E. casseliflavus*, both of which are intrinsically resistant to vancomycin, possessing the chromosomally encoded VanC resistance mechanism.

The VanC resistance mechanism is not readily transmissible between organisms and as such is deemed less clinically significant than VanA and VanB mechanisms which are encoded on freely transmissible genetic elements, plasmids and transposons, thus increasing the risk of resistance genes spreading to other organisms.

Performance


Vancomycin Resistant Enterococci (VRE) have recently emerged as nosocomial pathogens, due to the increased use of vancomycin for treatment of meticillin-resistant *Staphylococcus aureus* in the United States of America and use of a vancomycin-like glycopeptide (avoparcin) as a growth promoter in animal husbandry in Europe¹.

In the U.S.A., the Centers for Disease Control and Prevention reported that as many as 1 in 3 infections amongst intensive care patients were caused by VRE². Early detection of VRE is important for infection control and prevention measures, epidemiological infectious disease follow-up, and also prevention of vancomycin resistant *Staphylococcus* aureus emergence³.

Oxoid *Brilliance* VRE Agar was evaluated at a clinical trial site, using a panel of 120 well-characterised, stored clinical isolates. *Brilliance* VRE Agar gave a sensitivity of 94.7% and 100% at 24 and 48 hours respectively, with the trial site reporting that it was able to detect more positives at 24 hours than with the competitor chromogenic agar currently in use⁴.

In a separate internal evaluation, using a panel of 79 non VRE strains, *Brilliance* VRE Agar was 100% selective compared to a competitor media, which achieved selectivity of 94%.

Oxoid *Brilliance* VRE Agar is for *in vitro* diagnostic use only, by trained microbiologists. It must not be used beyond its stated expiry date, or if the product shows any signs of deterioration. Identifications are presumptive and should be confirmed.

thermo scientific

Oxoid Brilliance Agar Ready-Poured Plates

Order information

Description	Packaging	Ref
Brilliance VRE Agar	10x90mm plates	PO1175A
Other products in the <i>Brilliance</i> Resistance Screening range		
Brilliance MRSA 2 Agar (UK)	10x90mm plates	PO1210A
Brilliance MRSA 2 Agar (rest of Europe)	10x90mm plates	PO5310A
Brilliance ESBL Agar	10x90mm plates	PO5302A
Brilliance CRE Agar	10x90mm plates	PO1226A

all your VRE screening and testin	g needs.
	R4601996
	R4601956
	R4601990
	R4601958
	R4609289
	R4607030
	R4607050
20 test panels	R8311003
50 tests	DR0585A
60 tests	ID0580M
5x50 discs	CT0188B
EVEO diago	CT0058B
	50 tests 60 tests

The ATCC Licensed Derivative Emblem, the ATCC Licensed Derivative word mark and the ATCC catalog marks are trademarks of ATCC. Remel Inc. is licensed to use these trademarks and to sell products derived from ATCC® cultures. The identity, purity, and authenticity of the Licensed Products are exclusively the responsibility of Remel Inc., and not ATCC.

Contact Information:

International +44 (0) 1256 841144 oxoid.info@thermofisher.com

For more information about the Thermo Scientific Brilliance range of chromogenic media and other products, please visit thermoscientific.com/microbiology or talk to your local representative

