Measuring isomers and polymorphs
Featuring the Nicolet Summit X FTIR Spectrometer

Authors
Stephen R. Lowry, PhD
and Suja Sukumaran, PhD

Introduction
Isomers and polymorphs are of great interest to pharmaceutical labs due to the highly
variable chemical properties they can exhibit. Isomers are molecules that share the
same chemical formula but differ in the structural arrangement of atoms, resulting in
different chemical properties. Polymorphs also share the same chemical formula but
differ in their lattice arrangement. These different crystal forms also result in different
chemical behavior.

Vibrational spectroscopy is a popular identification technique for a wide range
of organic and inorganic chemistries, as molecular vibrations are sensitive
to differences in local environments, structures, and solvents. Fourier transform
infrared spectroscopy (FTIR) is a simple, non-destructive, and well-established
vibrational-spectroscopy technique for the identification of isomeric chemistries.
Raman spectroscopy, meanwhile, is considered to be an effective tool for the study
of polymorphs, as it is highly sensitive to changes in molecular backbone bonds.

In this study, FTIR spectroscopy is used to study simple molecules such as
acetaminophen and its isomers as well as polymorphic forms of acetaminophen,
a common analgesic and antipyretic used in many over-the-counter and
prescription formulations. It is well characterized for its pharmacological properties
and structure, making it an ideal test molecule.

Materials and methods
All materials used in this analysis were purchased from Sigma Aldrich.

FTIR analysis
FTIR spectra were collected on a Thermo Scientific™ Nicolet™ Summit™ X FTIR
Spectrometer equipped with a deuterated triglycine sulfate (DTGS) detector. In each
experiment a small amount of sample was placed on a Thermo Scientific™
Everest™ Diamond Attenuated Total Reflection (ATR) Accessory. Thermo Scientific™
OMNIC™ Paradigm Software was used for measurement and data analysis.
Figure 1 shows the complete setup of the instrument, including the Everest ATR
Accessory and laptop running OMNIC Paradigm Software.
Identifying isomers
Three isomeric forms of acetamidophenol were analyzed. Figure 2 shows their spectra and corresponding chemical structures. Close observation of the fingerprint region from 500–1500 cm⁻¹ shows that while there are similar peaks in all three spectra, there are also drastically different peaks that can be used to identify and characterize these molecules. Each spectrum was acquired in seconds using the Everest Diamond ATR Accessory with only a tiny amount of sample, making this analysis ideally suited for the QA/QC of raw materials as well as end products.

Identifying polymorphs
Although they consist of the same compound, polymorphs are known to crystallize into a variety of morphologies under differing physical conditions. The efficacy of pharmaceutical drugs depends strongly on their polymorphic form, making this a crucial aspect of NDA and patent application processes. In this study, a drop of acetaminophen was dissolved in ethanol and placed onto the Everest ATR Accessory. Time-based data collection with OMNIC Paradigm Software monitored the spectra as the ethanol evaporated. Initial spectra were dominated by the peaks of the ethanol solvent. After approximately 10 minutes of drying, the spectrum of dry acetaminophen was observed. Subsequently, the spectrum changed over the span of several minutes into a second form that then remained stable (Figure 3). This is due to a change in morphology caused by the drying process. Figure 3 shows the OMNIC Paradigm Software time-analysis window; the profile for each of the polymorphs observed in this study are shown on top, using characteristic peaks at 800, 1042, and 1500 cm⁻¹. The data indicates an increase in the peak intensity and stabilization for each of the polymorphic forms. The spectrum connected to polymorph ph1042 is shown at the bottom of Figure 3.
It is an established phenomenon that the same molecule can crystallize in slightly different ways on different matrices. In order to look into this effect further, a second variant was tested using an infrared window. Acetaminophen was deposited onto an infrared transparent polyethylene membrane; drying was monitored using transmission spectroscopy. After several minutes, the spectrum stabilized with a different profile as compared to either of the diamond ATR measurements. Figure 4 shows the results of all three experiments (short time ATR, long time ATR, and transmission).

Search results and published literature suggests that Figure 4, Spectrum A corresponds to the amorphous form of acetaminophen, Spectrum B is the monoclinic polymorph (Form 1) and Spectrum C is the orthorhombic polymorph (Form 2). It is beyond the scope of this study to fully investigate the development of a different polymorph on the hydrophobic micro-porous membrane, however, the sensitivity of infrared to this morphology is evidently quite dramatic.

Conclusions
In this application note, we have demonstrated that the high performance of the Nicolet Summit X Spectrometer, combined with the rapid analysis of the Everest Diamond ATR Accessory, provides a powerful tool for rapidly screening, classifying, and analyzing isomers and polymorphs of active pharmaceutical ingredients such as acetaminophen.

For research use only. Not for use in diagnostic procedures. For current certifications, visit thermofisher.com/certifications

Learn more at thermofisher.com/summit