Dear Avizo Inspect User,

This document will inform you about the most important new features, improvements, and changes introduced by Avizo Inspect 9.2. For information about Avizo Inspect 9.1, new software for Industrial Inspection and Materials R&D, please refer to the *Avizo Inspect 9.1 Release Notes* document.

Please read these Release Notes carefully. We would appreciate your feedback regarding this version. If you encounter problems, but also if you have suggestions for improvement, please report them to fei-sw-support@fei.com.

We would like to thank you in advance for your efforts.

July 2016, the Avizo Inspect team
CONTENTS

Contents ... 2

Avizo Inspect – New features and enhancements ... 3

Metrology Workroom - New features and enhancements ... 3

Recipes Workroom – New features and enhancements ... 6

Avizo – New features and enhancements ... 8

Properties Area enhancements .. 8

New modules .. 10

New reader .. 10

New Python scripting .. 10

Improved image processing engine ... 12

Enhanced features ... 12

XFiber extension – Enhancements and new features ... 14

Enhanced features ... 14

New modules .. 15

New XPoreNetworkModeling extension .. 17

New separation method dedicated to arbitrary pore space .. 17

Generation of a pore network model .. 18

Visualization ... 18

Pore network model filtering ... 20

Intersection percentage computing .. 20

Operating systems .. 22

Solved issues .. 22
AVIZO INSPECT – NEW FEATURES AND ENHANCEMENTS

METROLOGY WORKROOM - NEW FEATURES AND ENHANCEMENTS

ENHANCED MEASURES CREATION

A new Measure Creation menu allows choosing a measure from the Create Object menu.

The chosen measure type remains selected by default and you can create measures of the same type several times in a row without having to select it again, simply by pressing the Create button.

Press the Finish button or use the Measure Creation menu to change the measure type.

MEASURES SORTING AND VISIBILITY

In the Measures panel, measures are gathered with respect to the Local Coordinate System (LCS) they were created in.

By default, only the measures of the currently selected LCS are visible in the viewers.
The visibility of all measures in a given LCS can be edited by changing the state of the LCS visibility toggle. Three states are available: automatic, always visible, always hidden.

The visibility of each measure can be edited in the same way, by changing the state of its visibility toggle.

NEW LOCATION OPTION

Location options have been added to the Metrology panel of the Preferences dialog.

The Geometries Location Options allow enabling the automatic location in the 2D viewers of a given geometry primitive when:

- It is selected in the Geometry Fitting panel.
- It is selected as primitive for a measure creation in the Measures panel.
- It is selected as primitive for a Local Coordinate System in the Local Coordinate System wizard.

The Measures Location Options allow enabling the automatic location in the 2D viewers of a given measure when it is selected in the Measures panel.

NEW PICK GEOMETRY TOOL

A Pick Geometry tool has been added to the fitting toolbar to allow selecting in the Fitting Geometry panel the primitive corresponding to a picked geometry in the 3D viewer.
NEW FITTING TOOLS MENU

Fitting tools have been gathered in a new dropdown menu.

CUSTOMIZABLE NUMBER OF DECIMALS

The number of decimal displayed for primitives properties, measures information, measures in the viewers, etc. can be set in the Metrology panel of the Preferences dialog.

CUSTOMIZABLE MEASURES TEXT SIZE

The text size of the measures now remains constant in the viewers when zooming in and out. This size can be set from the Measures panel, as well as the text color.

IMPROVED READABILITY

The readability of the properties and statistics have been improved in the Geometry Fitting panel, as well as the readability of the properties of the selected measure in the Measures panel.

Right clicking on the information displayed now allows selecting and copying.
NEW TCL COMMAND

It is now possible to export primitives and measures to spreadsheets with Tcl commands:

theMetrologyWorkroom exportMeasuresIntoSpreadSheet

theMetrologyWorkroom exportPrimitivesIntoSpreadSheet

RECIPIES WORKROOM – NEW FEATURES AND ENHANCEMENTS

NEW PRODUCTION MODE

The Production Mode button allows switching the recipe from editing mode to the production mode.

When production mode is activated, results can be saved on disk but not exported in the Project View. Conversely, when it is deactivated, results can be exported in the Project View but not saved on disk.

IMPROVED MANAGEMENT OF THE EXPORT IN PROJECT VIEW

The export of results in the Project View can now be managed by controllers in the Recipes panel (when Production Mode is off).

By default, only the last result of a recipe is exported to the Project View. The main controller, in the first row, can be used to set the export rule for all results. The export of each result can be set independently by changing the state of its controller. This new feature replaces the prior “Remove intermediate data” option in the Recipes panel of the Preferences dialog.
IMPROVED MANAGEMENT FOR SAVING RESULTS

When *Production mode* is on, controllers are available to manage saving results on disk. By default, only the last result of a recipe is saved on disk. The main controller, in the first row, can be used to set the saving rule for all results. The saving of each result can be set independently by changing the state of its controller.
Avizo Inspect 9.2 comes with an improved properties area. It was redesigned with a focus on ergonomics and intuitiveness. For more details on each module’s enhanced ports, please refer to its documentation.

ADDITIONAL DATA PROPERTIES

Some additional information were added to the Properties Area of a data when it is selected in the Project View:

- **Memory size** displays the memory usage in mega bytes of the data,
- **Physical size** represents the physical extent from the lower left corner on the zmin Z coordinate of the data,
- **Preview** displays a preview of the data (the size of the preview is configurable through the preferences),
- **Histogram** shows the data histogram.

![Properties Area](image)

Note that this preview is also displayed in the data tooltip in the Project View.

GROUPS OF PORTS

In order to simplify the view of all the ports of a module, groups have been added. By default, the ports without a group are all displayed, whereas the other are hidden within their own group. A click on the arrow on the group’s left displays or hides the group ports.
ON/OFF PORTS

When checkboxes were used to display/hide some ports and to enter a specific configuration for the module, they have been replaced with a new type of On/Off port group. The ports are displayed when the On/Off port is turned on, and they are hidden when it’s turned off.

ADVANCED MODE

An Advanced mode is now available for displaying/hiding some ports or groups of ports for advanced usage. This button is displayed at the top of a module’s properties. The ports or group of ports are displayed when the Advanced button is turned on, and they are hidden when it’s turned off.
NEW MODULES

Distribution Analysis computes the cumulated value of a given property against another one. It takes a spreadsheet as input and can be used for instance in:

- Pore size distribution (X: pore size, Y: cumulated volume fraction);
- Fiber length distribution (X: fiber length, Y: cumulated volume fraction).

Ring Artifact Removal (Windows and Linux only) removes rings from the tomogram by comparing the means of the voxel values between the thresholds in each ring and the means of the values between the thresholds of the whole sample. Adjustments are then made to all the voxel values of each ring.

Beam Hardening Correction (Windows and Linux only) performs a simple correction for beam hardening that only really works for homogeneous cylindrical objects. Beam hardening shows as a radial increase in the attenuation coefficient. From a defined rotation axis, the average radial intensity profile is first computed. This profile can then be smoothed with a Gaussian filter, and is then normalized. Then all the intensities will be divided by this smoothed profile to give a more or less radial averaging.

Cylindrical Intensity Profile (Windows and Linux only) computes a cylindrical intensity profile that consists of the average intensity at a distance r from a given rotation axis. The output is a 2-column spreadsheet with those radii and average intensity values. Only unsigned 16-bit and float scalar images are supported.

Radial Autocorrelation (Windows and Linux only) computes radial autocorrelation of a tomographic image. For grayscale images, it calculates the radial autocorrelation function (2-point correlation function) of the tomographic image. For segmented images, each phase can be treated separately, or they can be treated as a micro-porosity image.

Vector To RGB creates an RGB image from a vector field. The output data is an *unsigned char* data object.

NEW READER

The **REK** reader adds support for Fraunhofer EZRT 3D image format for X-Ray CT, also used by Werth Messtechnik GmbH and ProCon X-Ray GmbH.

NEW PYTHON SCRIPTING

Avizo now integrates a ready-to-use **Python** distribution from FEI including the most frequently used scientific packages from the **Python** ecosystem. With its newly developed memory sharing technology between **Python** and Avizo, this unique distribution allows direct access of data loaded by Avizo through **Python** utilities, e.g., *NumPy* arrays. This has the advantage that data does not need to be duplicated in memory, as is common for more traditional **Python** bridges.

With its true pythonic scripting API, this integration allows access to Avizo modules from **Python** scripts that is fully compliant with **Python** scripting conventions. The comprehensive and user-friendly integrated **Python** console interface allows convenient script generation and execution with easy switching between **Python** and **Tcl**. The **Python** console also offers convenient integration of the API documentation. This allows seamless creation of script objects using **Python** that can later be attached to data objects using the graphical user interface in Avizo.
Advantages of the integration of FEI Python are:

- Intuitive, popular and modern scripting language
- Access to hundreds of freely available scientific algorithm in the Python ecosystem
- Ultra-efficient memory management
- Direct access to Avizo data objects from Python scripts
- Fully compliant with Python scripting conventions
- Convenient and full-featured Python console interface
 - Auto-completion for known attributes and functions
 - Full integration of API documentation
 - Easy switching between Tcl and Python
 - Convenience buttons to trigger most important scripting features, e.g., Clear Console, Remove Python Data Objects, etc.

FEI Python is based on Python 2.7.11 and includes the most popular scientific packages such as numpy and scipy. Numpy is an extension for handling multi-dimensional arrays, which allows for elementwise operations, comparisons, logical operations and statistics among others. Scipy is an extension which provides a toolbox for scientific computing such as interpolation, integration, image processing, linear algebra, signal processing, and statistics. Creating additional windows for viewing plots is not currently supported.

Here is a complete list of Python packages already included in FEI Python:

- enstaller 4.8.11-1
- alabaster 0.7.7-1
- babel 2.2.0-1
- backports_abcs 0.4.1
- certifi 2015.11.20.1-1
- configobj 5.0.6-1
- cyclery 0.9.0-2
- cython 0.23.4-1
- decorator 4.0.6-1
- distribute_remove 1.0.0-3
- docutils 0.12-1
- freetype 2.5.3-4
- h5py 2.5.0-4
- hdf5 1.8.15.1-1
- jdcal 1.2-1
- jinja2 2.8.1
- libjpeg 7.0-3
- libopenjpeg 2.1.0-2
- libpng 1.6.12-3
- libxml2 2.9.2-2
- libxslt 1.1.28-3
- lxml 3.5.0-1
- markupsafe 0.23-1
- matplotlib 1.5.1
- mkl 10.3
- numexpr 2.4.0-3
- numpy 1.9.2-2
- numpydoc 0.5-7
- openpyxl 2.3.1-3
• pandas 0.17.1-7
• patsy 0.4.1-1
• pil_remove 1.0.0-2
• pillow 3.1.0-1
• pydicom 0.9.9-1
• pyparsing 2.0.3-1
• pytables 3.2.2-2
• python_dateutil 2.4.2-2
• pytz 2015.7-1
• scikit_learn 0.17-1
• scikits.image 0.11.3-12

• scipy 0.16.1-1
• seaborn 0.6.0-6
• setuptools 19.4-1
• singledispatch 3.4.0.3-1
• six 1.10.0-1
• snowballstemmer 1.2.1-1
• seaborn 0.6.0-6
• sphinx_rtd_theme 0.1.9-1
• statsmodels 0.6.1
• tornado 4.3-1
• xlwt 1.0.0-1

IMPROVED IMAGE PROCESSING ENGINE

The new version of our image processing engine brings important performance improvements for all the Erode, Dilate, Close, and Open modules; the support of double and int64 outputs of the Volume Fraction module; and two new measures for the Breadth3d measurement (BreadthOrientPhi and BreadthOrientTheta which provide the orientation of the associated axis).

![Graph showing performance improvement](image)

ENHANCED FEATURES

A Memory Usage monitor is part of the status bar, with the memory value in percent is displayed using a progress bar. Its color changes when the consumed value exceeds a particular value:

• For workstations with less than 40 GB of memory, the progress bar becomes red if there is less than 4 GB left.
• For workstations with more than 40 GB of memory, the progress bar becomes red if there is less than 10% of the memory left.
The snapping method of the measurement tools available in the viewer window and the associated Measurement module is now disabled by default on scalar fields, instead of being set to the maximum gradient magnitude intensity (max gradient).

The Colormap Legend module can now be connected to display modules with a Colormap port. The min/max values and the histogram of the module are updated according to the current colormap or display module local range.

Three new columns are available in the Spatial Graph Statistics module spreadsheet output:

- **Curved-Length**: curved segment length, with units the same as the bounding box;
- **Chord-Length**: distance between start and end point of the segment, with units the same as the bounding box;
- **Tortuosity**: tortuosity of the segment which is equal to Chord-Length/Curved-Length.

Spatial Graph to Volume is renamed to Convert Geometry To Label.
ENHANCED FEATURES

CYLINDER CORRELATION

A visual cylinder template can be displayed to easily set cylinder parameters. The cylinder Length and the cylinder Radius are synchronized with their corresponding ports when it is created. Different mouse interactions allow setting the radius and the length.

The cylinder parameters are now saved into the parameters bundle of the correlation field output.

Some default port settings have changed: the Correct Missing Wedge is set to no, and the Contrast is set to Bright on dark.

The memory footprint has been reduced significantly.

TRACE CORRELATION LINES

The correlation field input data can now be of 8-bit unsigned type. The orientation field input data must be of type 16-bit unsigned if the correlation field input is of 32-bit floating type, or if the correlation field input is of 8-bit unsigned type.
The Trace Correlation Lines module now uses the cylinder parameters from the correlation field input to automatically set the min line distance, the min line length, and the search cone. These parameters are used as default values; each value is still editable by the user.

By default, a Spatial Graph output of this module automatically contains statistics such as the length and the orientation of each centerline stored as attributes. These statistics are the same as obtained using a Spatial Graph Statistics module.

NEW MODULES

Spatial Graph Local Statistics quantifies statistics according to the density of the spatial graph in subdomains. It computes local statistics related to the volume fraction, surface area, and orientation tensors for materials with recurrent objects (fibers, neurons, molecules, etc.). The statistics are computed within subdomains, positioned according to a regular lattice. The primary input is a spatial graph representing the centerlines of the studied object.

Filter Spatial Graph By BBox Contact removes all segments touching the bounding box of the spatial graph. All nodes which have no incident edges after this step are also removed.

Plot 3D Orientation plots 3D orientations on a half sphere or on a sphere. The orientations are represented as a set of 3D columns. Properties of the input data can be mapped on height or color. The property may also be weighted to scale the contribution of each sample to the height.

Spatial Graph Filter filters a spatial graph based on a user-defined formula using the listed properties. It will remove all the elements whose value does not fulfill this filter formula. Only one type of element, Nodes or Segments, can be filtered at a time. This module generates a new spatial graph containing only the nodes and segments resulting from this filtering.
Fiber Shape Statistics internally reconstructs a labeled fiber data object from a grayscale image and a mask by converting the input spatial graph to a binarized representation (using the module Convert Geometry To Label) and growing it within the mask. This representation is then used to calculate the volume fraction of each fiber and deduce various statistics. The fiber shape statistics are the following:

- **FiberID**: the ID of the studied fiber
- **Curved Length**: the length of the studied fiber
- **Diameter**: the average diameter of the studied fiber \(\text{diameter}=2*\sqrt{\text{volume}^3/\pi*\text{length}}\)
- **Cross Section Area**: this value is equal to fiber volume divided by fiber length
- **Cross Section Perimeter**: this value is equal to fiber area divided by fiber length
NEW XPOREN NETWORK MODELING EXTENSION

The new Pore Network Modeling extension allows accessing different statistics from a labeled and separated pore space 3D image. The statistics include distribution of the following parameters:

- Pore volume
- Pore area
- Pore equivalent radius
- Pore center of gravity
- Pore coordination number (number of connected neighbors)
- Intersection percentage between pore network model and original pore space
- Throat area
- Throat equivalent radius
- Throat channel length
- Throat connection (id of pore 1, id of pore 2)

The extension also allows reading pore network code from the Pore Network Node-Link data format.

From a labeled image representing a separated pore space, a pore network can be generated. It contains the network code and can be used with several dedicated modules for visualization, filtering, etc.

NEW SEPARATION METHOD DEDICATED TO ARBITRARY PORE SPACE

A pore space can be separated into a set of connected and labeled pores using the Separate Objects module. The Pore Network Modeling extension provides an optimized mode for arbitrary pore shapes (Skeleton – Aggressive). Spherical pores can still be well separated using the default mode (Chamfer – Conservative).

This method generates a label field using a separation algorithm based on watershedding and skeletonization, which carefully separates pores at throat centers.
GENERATION OF A PORE NETWORK MODEL

The Generate Pore Network Model module generates a pore network model from a separated and labeled pore space. The extracted pore network model contains the following statistics:

- Number of nodes
- Number of throats
- Coordination number
- Throat equivalent radius
- Throat channel length (defined as distance from pore to pore centers)
- Pore volume
- Pore equivalent radius

VISUALIZATION

The Pore Network Model View module is a visualization module for a pore network model. Pores are displayed using spheres, and Throats are displayed using cylinders. Each of them may be colored or scaled according to their attributes.
The network code can be displayed as a spreadsheet in the Tables panel. This spreadsheet has two tabs, one for pores and one for the throats. *Pores* and *Throats* can be highlighted by selecting them in the pore network model inner spreadsheet.
PORE NETWORK MODEL FILTERING

The Pore Network Model Filter module filters a pore network model based on an user-specified formula. It will remove all the elements whose value does not fulfill this filter formula. Only one type of element, Pores or Throats, can be filtered at a time.

This module generates a new pore network model containing only the pores and throats resulting from this filtering. An option allows removal of all the disconnected pores in a second process.

INTERSECTION PERCENTAGE COMPUTING

The Pore Intersection module compares a pore network model with a binary image in order to compute an intersection percentage for each sphere representing the pores and their representation in the binary image. The Volume of the pore network model attribute is automatically used for the intersection computation.
A copy of the pore network model is generated as a result. The intersection percentages computed are added in a new Pores attribute.
Avizo Inspect 9.2 runs on Microsoft Windows 7/8/10 64-bit.

In order to add custom extensions to Avizo Inspect with Avizo **XPand**, you will need Microsoft Visual Studio 2013 (VC12) Update 4 on Windows.

SOLVED ISSUES

Avizo Inspect 9.2 provides many enhancements and solutions to known problems, including the following:

<table>
<thead>
<tr>
<th>Module</th>
<th>Issue Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Filter</td>
<td>42976</td>
<td>The histogram was displaying values based on the working unit instead of the display unit. This has been fixed.</td>
</tr>
<tr>
<td>Anisotropic Diffusion</td>
<td>40955</td>
<td>The partition size was erroneously set to 100% on Tesla graphic cards. This has been fixed.</td>
</tr>
<tr>
<td>Batch Job</td>
<td>43509</td>
<td>Batch job with Deconvolution module could not be submitted. This has been fixed.</td>
</tr>
<tr>
<td>Convert Geometry To Label</td>
<td>44286, 44287</td>
<td>Only supported data types (Spatial Graph, Surface, Cluster, Line Set, Landmark Set) can now be connected and used in this module.</td>
</tr>
<tr>
<td>Deconvolution</td>
<td>27433</td>
<td>Data sizes up to 536,870,911 voxels (including border voxels) are now supported.</td>
</tr>
<tr>
<td>Export To VRML</td>
<td>45192</td>
<td>A VRML file is now correctly exported by this module.</td>
</tr>
<tr>
<td>Extract Subvolume</td>
<td>45221</td>
<td>Extracting a volume from a large image works correctly now.</td>
</tr>
<tr>
<td>Filament Editor</td>
<td>35971, 44906</td>
<td>The Graph Info spreadsheet was not updated properly when the input graph was changed. This has been fixed.</td>
</tr>
<tr>
<td>Generate Surface</td>
<td>44908</td>
<td>Since Avizo 9, Generate Surface internally reorganizes the input label field materials using their id (from bundle parameters). Materials without an id in the input label field are appended to the rest of materials with a new id. This can cause compatibility issues with projects saved with previous versions of Avizo. Use the command removeMaterialsIds to restore the previous behavior where materials were considered in their storage order parameters, regardless of their id.</td>
</tr>
<tr>
<td>Isosurface</td>
<td>42084</td>
<td>A new action has been added to the Threshold port options menu in order to disable the auto adjust range, which is on by default.</td>
</tr>
<tr>
<td>Label Analysis</td>
<td>46070</td>
<td>Duplicating a Label Analysis data object no longer causes an error.</td>
</tr>
<tr>
<td>LDA</td>
<td>42959</td>
<td>On Linux platform, the video memory amount was abnormally limited to 4096 MB regardless of the graphic card. This has been fixed.</td>
</tr>
<tr>
<td>License Activation System</td>
<td>45823</td>
<td>XFiber license is no longer automatically checked out at Avizo startup.</td>
</tr>
<tr>
<td>Match Contrast</td>
<td>36936</td>
<td>32-bit float data type was not supported. This has been fixed.</td>
</tr>
<tr>
<td>Material Statistics</td>
<td>39828</td>
<td>The resulting spreadsheet export to "Amira mesh" format was not working properly. This has been fixed.</td>
</tr>
<tr>
<td>Measurement</td>
<td>23258</td>
<td>Decimal tuning was using the working unit instead of the display unit. This has been fixed.</td>
</tr>
<tr>
<td>Range Partitioning</td>
<td>41690</td>
<td>Performance issues when the range partitioning is enabled are now fixed.</td>
</tr>
<tr>
<td>Resample</td>
<td>35810</td>
<td>When a new data object is connected, the Resolution port values are now updated according to the resolution of the input.</td>
</tr>
<tr>
<td>Resample Transformed Image</td>
<td>44186</td>
<td>When connected to a binary data object, the output was not a binary image. This has been fixed.</td>
</tr>
<tr>
<td>Script Object</td>
<td>44190</td>
<td>A check is now made on allowed data types according to the declared primary data type in the resource file of Script Objects.</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>Segmentation Workroom</td>
<td>44713</td>
<td>The TopHat and Watershed segmentation tools were abnormally available in Avizo Lite despite requiring an Avizo license. This has been fixed.</td>
</tr>
<tr>
<td></td>
<td>44714</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44755</td>
<td>The performance on the range modification of the Magic Wand has been improved.</td>
</tr>
<tr>
<td></td>
<td>45725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44867</td>
<td>When performing an interpolation between slices, the interpolation process would consider successive slices with selection as a stop and not interpolate the whole selection. This has been fixed.</td>
</tr>
<tr>
<td></td>
<td>44918</td>
<td>Since Avizo 9.1, no display modules configured in the Project Workroom will be shown in this viewer. You can change this by right-clicking into the 3D viewer and choosing a particular display module from Object visibility in viewer 15/Visible objects context menu. Due to compatibility issues with previous versions of Avizo, modules that were hidden might now be displayed in the 3D viewer at project reloading. Use the same Object visibility in viewer 15/Visible objects context menu to hide the objects.</td>
</tr>
<tr>
<td></td>
<td>44919</td>
<td></td>
</tr>
<tr>
<td>TIFF Writer</td>
<td>39434</td>
<td>When saving a 2D TIFF, the "offset" information is now saved and can be reloaded correctly.</td>
</tr>
<tr>
<td>Volume Fraction</td>
<td>33839</td>
<td>Precision of computed values was wrong for large data. This has been fixed.</td>
</tr>
<tr>
<td>Voxelized Rendering</td>
<td>44799</td>
<td>If a label field was connected to this module, the Gamma port was displayed, but should not have been. This has been fixed.</td>
</tr>
</tbody>
</table>

Our team is continually focused on solving as many issues as possible to make your experience of Avizo Inspect as satisfactory as possible. To this purpose, we would appreciate your feedback regarding this version. If you encounter problems, or if you have suggestions for improvement, please report them to fei-sw-support@fei.com.