Polymer Troubleshooting Guide
Polymer problems identified – simply, efficiently

Ensure raw materials, masterbatches and finished products meet your quality standards, and if not, investigate why using Thermo Scientific™ Spectroscopy Solutions.

- Thermo Scientific™ Nicolet™ Summit FTIR Spectrometer
- Thermo Scientific™ Nicolet™ iS20 FTIR Spectrometer
- Thermo Scientific™ Nicolet™ iS50 FTIR Spectrometer
- Thermo Scientific™ Everest™ Diamond ATR Accessory
- Thermo Scientific™ SMART™ iTX Diamond ATR Accessory
- Thermo Scientific™ OMNIC™ Specta™ Software
- Thermo Scientific™ OMNIC™ Paradigm Software
- Thermo Scientific™ DXR2 Raman Microscope
- Thermo Scientific™ Nicolet™ iN10 Infrared Microscope
- Thermo Scientific™ Nicolet™ iS50 Modules and Accessories
Plastic or Polymer Problems?

Use the Thermo Scientific Polymer Troubleshooting Guide to find answers.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>POSSIBLE CAUSES</th>
<th>SAMPLE TESTING PLAN</th>
<th>DATA ANALYSIS PLAN</th>
<th>RECOMMENDED CONFIGURATION</th>
</tr>
</thead>
</table>
| **Bloom** | Improper additive formulation – excess or un-reacted additive | 1. Scrape material from surface 2. Measure by single-bounce ATR | 1. Search libraries to identify the unknown material 2. Adjust formulation based on identified material | **Nicolet iS20 FTIR Spectrometer**
Smart iTX Diamond ATR Accessory
OMNIC Specta Software for Polymer Labs |
| **Hazing/streaking/incorrect color (white or black)** | Improper formulation: additives or fillers; contamination, poor mixing | 1. Measure directly or excise outer or inner material from sample 2. Measure using diamond ATR Mid-IR or Far-IR for inorganic fillers | 1. Compare to reference part data and search libraries to identify differences 2. Change formulation if appropriate | **Nicolet iS50 FTIR Spectrometer**
Built-In Diamond ATR Accessory
Solid-substrate beamsplitter
OMNIC Specta Software for Polymer Labs |
| **Oily or tacky surface** | Improper additive formulation or contamination | 1. Wipe or scrape surface to isolate material or direct analysis 2. Measure residue or sample surface on single-bounce ATR 3. Measure reference part or sample with surface cut off | 1. Search libraries to identify material 2. Adjust formulation or change process to avoid contamination | **Nicolet Summit FTIR Spectrometer**
Everest Diamond ATR Accessory
OMNIC Paradigm Software with Polymer Library |
| **Inclusions, de-lamination, fish eyes (complex)** | Poor processing, contamination | 1. Isolation of included contaminants 2. Sample cross-sectioning to view layers 3. Perform microscopic analysis: a. FTR: 25 µm b. Dispersive Raman: 5 µm | 1. Search libraries to identify contamination 2. Change process to avoid contamination | **Nicolet iN10 FTIR Microscope**
OMNIC Specta Software for Polymer Labs
OR
DXR2 Raman Microscope
OMNIC Specta Software for Raman Analytical |
| **Roughness, speckles, mars, bubbles** | Contamination: surface or embedded processing problem (trapped gas) | 1. Isolate surface or embedded material 2. Measure using single-bounce Diamond, ZnSe or Ge* ATR | 1. Search libraries to identify contamination 2. Change process to avoid contamination | **Nicolet iS20 FTIR Spectrometer**
Smart iTX Diamond ATR Accessory
OMNIC Specta Software for Polymer Labs |
| **Brittle, cracking, weakness** | Oxidation, degradation, contaminant, incorrect material | 1. Excise surface or inner material 2. Measure by single-bounce ATR | 1. Compare to reference part 2. Identify unexpected components 3. Ensure material is correct for conditions; change formulation as needed | **Nicolet iS20 FTIR Spectrometer**
Smart iTX Diamond ATR Accessory
OMNIC Specta Software for Polymer Labs |
| **Diminished physical properties** | Crystallinity, structure, polymorphism, inorganic additives, degradation, contamination | Measure directly using Raman or single-bounce Diamond ATR in Far-IR range | 1. Search libraries using spectral region search to identify components 2. Optimize formulation or manufacturing process | **Nicolet iS50 FTIR Spectrometer**
Nicolet iS50 Raman Module
Built-In Diamond ATR Accessory
Solid-substrate beamsplitter |
| **Material too soft or hard** | Improper formulation: co-polymers, plasticizers, fillers (>1% by weight) | 1. Measure directly using single-bounce Diamond, ZnSe or Ge* ATR 2. May require cutting away top surface to expose interior | 1. Calculate peak height or area ratio 2. Verify co-polymer ratios 3. Adjust formulation and check ratios routinely | **Nicolet Summit FTIR Spectrometer**
Everest Diamond ATR Accessory
OMNIC Paradigm Software with Polymer Library |
| | Improper formulation: low-level additives (<1% by weight) | 1. Melt polymer into thin film of known thickness 2. Measure film with transmission | 1. Quantify additives using peak height or area method 2. Adjust formulation 3. Check additives routinely | **Nicolet Summit FTIR Spectrometer**
Mini-Film Maker Kit |
| **Swelling** | Surface contamination | 1. Extract contamination into solvent 2. Dry onto ATR crystal or IR window 3. Measure using transmission | 1. Search libraries to identify contamination 2. Determine if polymer or formulation is appropriate for application | **Nicolet Summit FTIR Spectrometer**
Everest Diamond ATR Accessory
OMNIC Paradigm Software with Polymer Library |
| **Warping** | Improper formulation, incorrect processing conditions (if nothing found wrong with formulation) | 1. Measure directly using single-bounce Diamond, ZnSe or Ge* ATR 2. May require cutting away top surface to expose interior | 1. Calculate peak height or area ratio 2. Verify co-polymer ratios 3. Adjust formulation and check ratios routinely | **Nicolet iS20 FTIR Spectrometer**
Smart iTX Diamond ATR Accessory
OMNIC Specta Software for Polymer Labs |
| **Wear, premature failure** | Wrong material or formulation, material failure, extreme use conditions | 1. Measure directly using single-bounce Diamond, ZnSe or Ge* ATR 2. May require cutting away top surface to expose interior 3. Measure sample and reference part on TGA-IR | 1. Search libraries to identify material 2. Compare sample data to reference part data to identify differences 3. Change formulation if appropriate | **Nicolet iS50 FTIR Spectrometer**
Built-In Diamond ATR Accessory
TGA Interface Module
OMNIC Specta Vapor Phase library |
| **Odor** | Oxidation, degradation, contamination | 1. Solvent extraction, evaporate solvent 2. Measure residue on ATR or IR window 3. Measure sample and reference part on TGA-IR | 1. Search libraries to identify material or contamination 2. Compare sample data to reference part data to identify differences 3. Change formulation if appropriate | **Nicolet iS20 FTIR Spectrometer**
TGA Interface Module
OMNIC Specta Vapor Phase library |
| **Need to verify raw materials** | Inconsistent or out-of-specification bulk ingredients (>1% by weight) | 1. Measure directly using single-bounce ATR OR 2. Measure polymer beads on NIR integrating sphere Sample Spinner or powders in container by NIR Fiber Probe | 1. Use QCheck function to correlate spectrum with reference material OR 2. Use chemometrics model to identify and quantify ingredients 3. Apply statistical process control to ensure product consistency | **Nicolet Summit FTIR Spectrometer**
Everest Diamond ATR Accessory
Nicolet iS50 FTIR Spectrometer
Nicolet iS50 NIR Module |
| | Inconsistent or out-of-specification low-level ingredients (<1% by weight) | 1. Melt polymer into thin film of known thickness 2. Measure film with transmission | 1. Quantify additives using peak height or area method 2. Apply statistical process control to ensure product consistency | **Nicolet Summit FTIR Spectrometer**
Mini-Film Maker Kit |

* Ge for Carbon-filled polymers
• TGA-IR = Thermogravimetric Analysis Infrared
• NIR = Near infrared
• FTIR = Fourier transform infrared
• ATR = Attenuated total reflectance

Watch how-to videos and download application notes from our Polymer Resource Center at thermofisher.com/polymers
Product Selection Guide

Spectroscopy Solution by Task and Sample Property

Using the table below, find your task and sample feature to select the instrument configuration and solve your polymer problems.

Thermo Scientific Instruments

<table>
<thead>
<tr>
<th>Task</th>
<th>QA/QC Verification</th>
<th>Material Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Incoming ingredients</td>
<td>• Additive concentrations (plasticizers, colorants, masterbatch)</td>
<td>• New product development</td>
</tr>
<tr>
<td>• In-process materials</td>
<td></td>
<td>• Failure analysis</td>
</tr>
<tr>
<td>• Finished products</td>
<td></td>
<td>• Deformation studies</td>
</tr>
<tr>
<td>• Pellet composition</td>
<td></td>
<td>• Reverse engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Component Concentration >1%</th>
<th>Component Concentration <1%</th>
<th>Bulk</th>
<th>Physical/Chemical Formulation</th>
<th>Fillers, Inorganic Pigments</th>
<th>Crystallinity, Morphology</th>
<th>Multi-layer Films, Small Inclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicolet Summit FTIR Spectrometer</td>
<td>Everest Diamond ATR* Accessory</td>
<td>Hot-pressed Film Kit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicolet iS20 FTIR Spectrometer</td>
<td>Smart iTX ATR Accessory</td>
<td>Hot-pressed Film Kit</td>
<td>Smart NIR Integrating Sphere</td>
<td>In-compartment TGA accessory + Mercury TGA Software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicolet iS50 FTIR Spectrometer</td>
<td>Built-in Diamond ATR* or Smart iTX ATR Accessory</td>
<td>Hot-pressed Film Kit</td>
<td>iS50 NIR Module</td>
<td>TGA-IR accessory + Mercury TGA Software</td>
<td>Built-in Diamond ATR + Solid Substrate beamsplitter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicolet iN10 Microscope</td>
<td>Micro Tip ATR* accessory</td>
<td>Hot-pressed Film Kit</td>
<td>Nicolet iZ10 Module + In-compartment TGA accessory + Mercury TGA Software</td>
<td></td>
<td></td>
<td></td>
<td>Nicolet iN10 Infrared Microscope</td>
</tr>
<tr>
<td>DXR2 Raman Microscope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ATR is a useful tool for quick, basic material and additives characterization

Polymer Analysis Kits

We offer kits that combine commonly used tools for polymer analysis. They include our patented Multi-Component Search, a 13,000 compound spectral library and 240-page Infrared Spectroscopy of Polymers Knowledgebase along with appropriate sampling device(s). For more details, see the FTIR Polymer Analysis Kit flyer (FL52273_E).

Polymer Analysis Kits

- **Nicolet Summit FTIR Spectrometer with Everest ATR Accessory**
 - For streamlined QA/QC testing of polymers and ingredients

- **Nicolet iS20 FTIR Spectrometer with iTX ATR Accessory**
 - For high-performance polymer QA/QC and contaminant/failure analysis

- **Nicolet iS50 FTIR Spectrometer with TGA-IR accessory**
 - For polymer method development, deformation, troubleshooting and research

- **DXR2 Raman Microscope or Nicolet iN10 Microscope**
 - For small particle identification and polymer characterization that requires high-spatial resolution

Visit our Polymer Resource Center to learn more at: thermofisher.com/polymers

For Research Use Only. Not for use in diagnostic procedures. ©2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. PG52464_E 03/19M