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Abstract
Computed Tomography (CT) is on its way to become the de facto standard in the 

field of materials science and material development especially when it comes to 

the analysis of fibrous materials. It provides full 3D details inside the materials, 

and enables non-destructive analysis, which may be coupled with either in-situ 

experiments or numerical simulations to assess the physical properties of the 

materials. The current question is mostly about the compromise between image 

resolution and volume  

of data being analyzed, to extract accurate information allowing for the 

characterization of the fibrous material. Among those statistics, we focus here 

particularly on the distribution of fiber orientations within the material. We will highlight 

three different approaches that may operate at different resolutions to provide insights 

about the fiber orientations. 

After presenting these different methods in a first part, we will then describe the data 

used for this study. We will apply the described procedures to real data that has been 

acquired by a state of the art µCT system. We will also work with an artificial dataset 

generated with user-defined properties, which provides us with a goldstandard 

reference against which the result methods can be evaluated. For both real and 

synthetic data, we will also investigate the behavior of the proposed approaches 

with respect to the scanning resolution, simulated here by applying them on down-

sampled versions of the same original images. The obtained results will be presented 

in section 3, allowing us to draw conclusions on the respective merits of the proposed 

estimation methods.



1. Methods 
We consider three different methods for estimating the local fiber orientation, in sub-volumes of predefined size and positioned 

without overlap along a regular lattice. The first approach (FFT) is based on the principal component analysis of the Fourier 

Spectrum, inspired from [1]. The second approach (GRAD) relies on the analysis of the local gradients [2]. These first two 

approaches rely on the texture of the image to derive estimates of the local orientation, and are expected to provide results even in 

the case of low resolution data where individual fibers cannot be distinguished. The third method (XFIBER) consists in segmenting 

each individual fiber and extracting their centerlines, which gives immediate access to all statistics regarding orientations of the 

fibers, but also length, diameter or even tortuosity of fibers. The approach, described in [3,4], relies on a template matching stage 

and a specific fiber tracing algorithm. All three methods are implemented in Avizo 3D software for scientific and industrial data 

developed by Thermo Fisher Scientific.

The methods are configured to operate on the same subdivisions of the data, to generate a tensor representing  

the local distribution of orientations in the corresponding subvolumes. This tensor is symmetric positive in all three cases, and 

its eigenvalue decomposition provides insights about the major orientation, and the dispersion of orientations. In the XFIBER 

approach, which relies on explicitly detected fibers, the orientation tensor is clearly interpretable [5]. It is defined as the outer 

product of unit vectors representing the orientation of fiber segments, weighted by the corresponding segment length L, and 

normalized such that they have unit trace:

In contrast, the FFT and GRAD derive their tensors from image texture descriptors, making their interpretation less straightforward, 
and a direct comparison challenging.  
For instance, in the FFT approach, the major orientation corresponds to the direction where there is the least amount of high 
frequency variations, and thus to the eigenvector corresponding to the lowest eigenvalue. On the contrary, for the GRAD and 
XFIBER approaches, the major orientation is the eigenvector corresponding to the largest eigenvalue.

Therefore, we rather perform our comparisons of the methods based on the statistical relationship between the estimated tensors, 
and on the estimated major orientation.

2. Data sources
2.1 Generation of synthetic data
A synthetic distribution of non-overlapping fibers (straight cylinders) following a skin-core structure has been generated, such 

that the different methods for estimating the fiber orientations may be compared quantitatively against a known reference. The 

synthesis has been performed using a force-biased algorithm inspired from [6]. The process starts with the insertion of fibers 

following prescribed random distribution laws for their position, length, orientation and diameter, within the volume of interest. 

Then, the algorithm iteratively translates and rotates fibers that are overlapping. The diameter of all fibers is also slightly reduced 

at each iteration to ensure the convergence of the algorithm. A fiber volume fraction around 10% was obtained. The volume was 

discretized, including moderate gaussian noise and blurring, with a resolution such that the average fiber diameter corresponds to 

5 voxels, and turned into a grayscale image of 512x512x512 voxels as illustrated in Figure 1.

Figure 1: (a) Slice through the synthetic volume, (b) 3D volume rendering of the synthetic volume, colorized according to the estimated major 
orientation (the red, green and blue axes indicate the color code), (c) slice through the synthetic volume, downsampled by a factor 4, (d) 
downsampled by a factor 8.



Figure 2: (a) Slice through the GFRP volume, (b) 3D volume rendering of the GFRP volume, colorized according to the estimated major orientation 
(the red, green and blue axes indicate the color code), (c) image downsampled by a factor 4, and (d) factor 8.

2.2 Glass fiber composite
We also apply the methods on an actual µCT acquisition of a Glass Fiber Reinforced Polymer (GFRP), shown in Figure 2. The 

polymer is charged with standard short glass fibers of 10µm diameter on average, at a volume fraction measured around 17% in 

the considered volume of interest, which is roughly 2x2x2mm³. The scanning resolution is 1.5µm, which is sufficient to distinguish 

individual fibers.

3. Results
The volumes are subdivided in cubic regions following a regular lattice, to perform local orientation analyses using all three 

methods. Both datasets follow a similar skin-core structure with orthogonal fiber orientations. The subdivision of both volumes is 

made such that most slabs of the data contain homogeneous regions in terms of fiber orientation with one clear major orientation 

(either X or Z), while other slabs contain a mixture of fibers oriented mostly along X, and along Z. For both datasets, the local 

orientation was measured on the full resolution data, but also after downsampling by a factor 4, and 8, using Lanczos interpolation, 

to evaluate the robustness of the estimates with respect to imaging resolution. 

3.1 Synthetic data 
For the synthetic dataset, we compute the reference orientation tensor using (eq. 1), i.e. the same approach as with XFIBER, 

although on the true fiber segment (before discretization), whereas the XFIBER measure is generated after generating a grayscale 

volume and performing the fiber detection on it. Considering the whole volume, the different approaches show strong statistical 

relationships with the reference tensors, which seem almost linear as can be seen in Figure 3. The coefficient of determination 

R² appears to be very strong, except for the diagonal component in the GRAD approach. This tendency is fairly well maintained 

when decreasing the image resolution, as shown in Figure 3(d). The off-diagonal component appear more difficult to estimate, 

and less robust. However, it must be noted that in the considered synthetic model, few fibers are actually significantly away from 

the two major orientations, making it more difficult to draw conclusions. It seems more interesting to note that, although the actual 

accuracy of the fiber detection of the XFIBER approach considerably drops at lower resolution, the results of the tracing still show 

high value in terms of orientation measurements.



Figure 3: (a), (b), (c) Scatter plots of the true vs estimated tensor components, respectively (a) A11, (b) A33, and (c) A13. (d) Corresponding 
coefficients of determination for the tensor components, estimated using the different methods at different image resolution.

Examining the results slab by slab, through the thickness of the data structure, allows us to investigate results in more details. The 

subdivision of the data has been performed such that all slabs except slab 3 and 6 present homogeneous population of fibers 

which are oriented either along the X (slabs 4 and 5) and Z (slabs 1, 2, 7 and 8) axes, whereas slabs 3 and 6 contain a mixture of 

fibers oriented in X and Z directions (about 2/3 of fibers are along X, and 1/3 along Z). This is visible in Figure 4(a).

In homogeneous regions (all slabs except 3 and 6), the average angular error (angle between the true major orientation, and the 

estimated orientation) was very low for all 3 methods, with respectively 0.35, 0.48 and 1.26 degrees for the XFIBER, FFT and 

GRAD.

On the other hand, in inhomogeneous regions (slabs 3 and 6), the estimation of the major orientation proved to be prone to 

significant errors using texture-based approaches, whereas the fiber tracing approach remained very precise. However,  

as can be seen on Figure 4(b), the estimation is significantly more accurate and robust with respect to resolution using the XFIBER 

approach compared to the texture-based measurement methods GRAD, and especially FFT. 

Figure 4: (a) Representation of the subdivisions for local orientation analysis, and plot of the average angular error in the estimation of the major 
orientation using each 3 method. The errors are averaged per slabs, a logarithmic scale is used for the angular error. (b) Average angular error for 
the major, and (c) second orientations within slabs 3 and 6, which presents two populations of fibers.



3.2 Glass fiber composite 
A similar experiment and analysis was carried out on the GFRP 

sample. Since no ground truth orientation measurements are 

available in this case, we use the results generated by the 

XFIBER method at full resolution as a reference. The results are 

presented in Figure 5.

Figure 5: (a) Representation of the subdivisions for local orientation analysis, and plot of the slab-averaged angular error in the estimation of 
the major orientation using each 3 method at the different resolutions. The reference measurement is the result of XFIBER1. (b) Coefficients of 
determination for the tensor components (b) Average Angular Error for the estimation of the major orientation, within slabs with homogeneous 
orientations (all but slabs 4 and 7). (d) Average angular error for the major, and (e) second orientations within slabs 4 and 7, which clearly present 
two populations of fibers.

As with the synthetic dataset, and when considering volume-wise statistics, the different methods appear to be very strongly 

correlated. The coefficients of determination of the tensor components are very high (Figure 5(b)), and the major orientation 

estimation remains within 5 degrees in homogeneous regions of the data, and still within 12 degrees after downsampling by a 

factor of 8.

However, the estimations from the different methods vary significantly when considering inhomogeneous slabs 4 and 7, which 

are at the interface between regions presenting orthogonal fiber directions. Although the XFIBER approach provides estimated 

orientation that are relatively consistant across scales (<10° difference for the major and second orientation at resolution factor 4), 

the other methods show considerably more deviations (around 20° or more).



4. Conclusion
We presented and compared three different approaches aiming at the estimation of local fiber orientation statistics within 

composites, based either on texture-based measures, or on the explicit detection and tracing of individual fibres. These 

approaches, implemented in the Avizo software, have been applied on a skin-core glass-fiber reinforced polymer, and on 

a synthetic dataset generated with a similar fibrous structure providing a gold-standard reference. We also investigated 

the robustness of the estimates with respect to decreasing 

the image resolution, as the typical practical tradeoff with CT acquisition, is to choose between imaging smaller volumes at a 

higher magnification, or using a coarser resolution but increased volume of acquisition.

The results on both synthetic and real data suggest that the fiber local orientation tensor estimations are, overall, quite consistent 

for the different methods, and relatively robust to a decrease of the image resolution. Interestingly, even if in terms of detection 

performance, the fiber tracing accuracy drops significantly when the image resolution reaches the fiber diameter, the results it 

generates are still exploitable, and actually quite precise and robust to characterize the orientations in the sample.

The fibre architecture considered in this study allows us to analyse regions with a single population of fibers, all more or less 

oriented along the same orientation; as well as regions featuring two populations of fibres with two orthogonal preferred 

orientations. When a single orientation is present, although  

the fiber tracing approach is slightly more precise especially at finer resolutions, all considered methods behave accurately. 

However, when a mixture of orientations are present, the texture-based approaches show significantly decreased performances, 

whereas the fiber tracing approach remains precise, even at relatively coarse image resolution. This is particularly interesting when 

considering fibrous materials exhibiting complex distributions of orientations, such as woven fibres, moulded composites, or more 

random distributions.
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