
Amira-Avizo Python
Ultra-efficient memory management

Methods
In order to compare the performance of Amira-Avizo
Python, we executed two different Python scripts on data
of various sizes using Enthought’s Canopy 1.7.2 (Enthought,
Austin, TX, USA), the Open Source project Icy 1.8.3.2
(Institute Pasteur, Paris, France), and Amira Software 6.3
(Thermo Fisher Scientific, Hillsboro, OR, USA).

Icy was chosen as one of the few Open Source projects
that offers a classic Python bridge integration with full
access to the Python ecosystem through the execnet
mechanism.

The first Python script was designed to execute a
computationally intensive task. For this, the absolute value
of a shifted Fourier transform for a relatively small data
set of 350 MB of unsigned bytes was computed. The
second Python script was designed to test the efficiency
of the shared memory technology developed during this
integration. Here, two 1 GB data sets of unsigned bytes
were subtracted from each other. All three tools shared the
same initial conditions, e.g. the data was already loaded
into memory prior to the start of the script. During the
execution of the scripts in Canopy, only the computation
itself was executed directly on the loaded data. In

WHITE PAPER

Python™ Programming Language is a scripting language that has become increasingly popular among
scientists in recent years. Besides being an intuitive language, it is also surrounded with an entire ecosystem
of freely available tools. The Python language was integrated into Thermo Scientific™ Amira-Avizo Software
to offer you a modern scripting language to create your own solutions. Additionally, we wanted to enable
integration of the vast landscape of algorithms in the Python ecosystem into such solutions.

With this integration, we can offer you the best performing Python integration available in the market, while
also maintaining compatibility with the existing Python ecosystem. This has led to the creation of the Amira-
Avizo Python distribution, enabling you to use Python tools with the same performance and similar memory
consumption inside of Amira-Avizo Software as would be expected from any other modern standalone
Python release. With its novel memory sharing technology, Amira-Avizo Software and Python programming
language are tightly integrated, as the following examples show.

Amira-Avizo Software, the scripts first had to exchange
the pointers to the shared memory, where in Icy, data had
to be sent to the Python process and back to Icy to be
able to directly visualize the images in the application. The
individual scripts can be viewed upon request. All tests
were executed on an HP Z820 with 64 GB of main memory
and two Intel Xeon E5-2620 CPUs.

Results
During the execution of the scripts, peak memory usage of
the script itself was measured, which did not include the
memory used by the application or the preloaded data.
After completion of the script, the residual memory usage
of the entire application was also measured, including all
loaded data sets. In addition, the duration of the script,
from start to finish, was measured.

Find out more at thermofisher.com/amira-avizo

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of
Thermo Fisher Scientific and its subsidiaries unless otherwise specified. WP0012-EN-01 2019

Memory Usage during FFT Computation

M
em

o
ry

 U
sa

g
e

in
 M

B

35 000

30 000

25 000

20 000

15 000

10 000

5 000

Peak

Icy/CanopyCanopy Amira-Avizo Python

Residual
0

Memory Usage during Subtraction

M
em

o
ry

 U
sa

g
e

in
 M

B

14 000

12 000

10 000

8 000

6 000

4 000

2 000

Peak

Icy/CanopyCanopy Amira-Avizo Python

Residual
0

Duration of Computation

D
ur

at
io

n
in

 s
ec

o
nd

s

300

250

200

150

100

50

FFT

Icy/CanopyCanopy Amira-Avizo Python

Subtract
0

Figure 1. Memory usage of the script computing
the Fourier transform. Here, peak memory usage of
Amira-Avizo Software and Canopy are almost identical
at approximately 22 GB, while Icy uses up to 32 GB.
The residual memory usage of the three different
applications shows Amira-Avizo Software occupying
less than half the memory of both Canopy and Icy.

Figure 2. Memory usage during the subtraction task.
Here, Amira-Avizo Software uses twice the memory
during computation of the script than Canopy, while
Icy uses eight times as much. However, the residual
memory consumption of Amira-Avizo Software and
Canopy is almost identical, while Icy occupies four
times as much.

Figure 3. Illustration of the amount of time the script
needs for computing the same results on either
platform. For the subtraction and Fourier transform
task, Amira-Avizo Software and Canopy take about the
same amount of time, while Icy is approximately 40%
slower in the computationally intensive task and about
100 times slower for the memory-sharing intensive task.

Discussion
The peak memory usage results show that Amira-Avizo
Software uses the system memory more efficiently, with
memory usage that is very much comparable to Canopy.
During the memory-sharing intensive task, a doubling
in peak memory consumption is observed. After closer
investigation, it was observed that this increase in peak
memory consumption is for only a brief duration. This
is attributed to the fact that Python generates the result
and has ownership of the allocated memory. The only
option to improve this situation would require for Python
to accept pointers to allocated memory for result storage.
This would require an extension of the Python interface
that, for compatibility reasons, we did not perform in our
distribution. The residual memory usage shows that Amira-
Avizo Software’s Python integration not only uses memory
efficiently, but also assists the user in deallocating unused
memory. In this category, both Icy and Canopy require
additional considerations by the script developer. This is
especially apparent in Figure 1. The much slower execution
performance of Icy is due to the overhead of the data
management. Here, data must be copied and duplicated in
both directions, e.g. when sending from Icy to Python and
when returning the results from Python to Icy.

Conclusion
This comparison of Python integrations shows that Amira-
Avizo Python integrated into Amira-Avizo Software offers
a very competitive and memory-efficient alternative to a
standalone Python distribution such as Canopy. It offers
the convenience of immediately visualizing the results
computed with Python using the high-quality rendering
tools in Amira-Avizo Software. In addition, all Amira-Avizo
Software tools can be used in these Python scripts,
providing any Python developer more than what a Python
distribution alone can offer. Once a Python script is
converted into an Amira-Avizo Python Script Object, it
can easily be accessed through Amira-Avizo Software’s
proven user interface and treated as a common Amira-
Avizo Software module. The memory-sharing technology
developed for Amira-Avizo Software’s Python integration
allows for a much more fluent programming experience.
Handling the data transfer via the execnet bridge, as was
done for Icy, is not only time-consuming, but also prone to
error and difficult to debug.

