Ultra-Fast Inclusion Analysis with Spark-OES Thermo Scientific ARL iSpark, the All-in-One Steel Analyzer

Jean-Marc Böhlen, Thermo Fisher Scientific, Chemin de Verney 2, 1024 Ecublens, Switzerland

INTRODUCTION

Analysis of non-metallic micro-inclusions extends the capability of the Thermo Scientific ARL iSpark OES spectrometer for the analysis of solid steel samples much beyond usual elemental concentration. It allows performing various types of inclusion related determinations in the time of a standard OES analysis. This offers unequalled perspectives for controlling the

Analysis time

Combined inclusion and elemental concentration analysis are performed in slightly more than 20 s for a single measurement, i.e. the time needed for the standard OES analysis. This makes inclusion analysis extremely attractive in the context of production, where costs significantly depend on analysis time.

Examples of inclusions analyzed

Various types of endogenous and exogenous inclusions may be observed in steel, e.g. oxides (Al₂O₃, MgO, CaO, MnO, TiO₂, SiO₂...), spinels $(Al_2O_3$ -CaO, Al_2O_3 -MgO...), sulfides (CaS, MnS, AIS...) and many others.

QUANTITATIVE INCLUSION SIZE ANALYSIS

Traditional methods to determine inclusion sizes (e.g. SEM/EDX) are extremely time-consuming, taking typically 2-4h per analysis in a very competent laboratory.

Figure 6. Oxygen concentrations in certified low alloy steel reference materials

steel production on-line.

BENEFITS

The main benefits of using the Spark-DAT inclusion analysis methods of the ARL iSpark are the following:

- Inclusion information is available during the production of steel. The inclusion analysis which is performed in combination with the classical spectrochemical analysis does not extend the time needed for the traditional OES analysis.
- Low investment costs. The inclusion analysis is performed with the ARL iSpark OES spectrometer used for process control in steel production
- Extremely short time for inclusion analysis. A tworuns combined analysis takes about 1 minute and is therefore possible for more than 30 samples per hour
- No additional cost and time of operations. Sample and sample preparation, maintenance and service operations are the same as for a standard OES instrument.

PRINCIPLES

Spark-DAT inclusion analysis methods are analytical methods based on specialized algorithms included in the analytical software OXSAS. With Spark-DAT the single intensity values that are generated by the single sparks are acquired separately on the channels of the inclusion elements. Fast algorithms are used to calculate on-line the values corresponding to the information of interest.

COUNTING INCLUSIONS

Our algorithms allow the evaluation of the number of inclusions by counting intensity peaks on the channels of elements present in inclusions. A peak is normally defined as an intensity signal $I_{peak} > m + 3 \cdot SD$, where m is the mean intensity of the element dissolved in the matrix and SD its standard deviation.

Steel samples can easily be classified as clean or dirty according to the number of peaks counted on the channels of the inclusion elements.

Our algorithms also allow counting peak coincidences, i.e. peaks appearing simultaneously on the channels of several elements consecutively to a single spark. Coincidence of peaks on Ca and S channels means that the two elements are part of the same inclusion, typically a CaS inclusion (FIGURE 2).

Figure 2. Analysis of two low alloy steel samples

Furthermore, our advanced algorithms enable quantitative analysis of inclusions size and size distribution. The average equivalent spherical diameters (ESD) of different inclusion types and size classes can be calculated. FIGURE 4 presents an example of size distribution diagram of AI_2O_3 , based on the application of such algorithm and size calculation method for several production samples. Note the horizontal axis unit in µm and the vertical one in inclusions per cubic mm.

Figure 4. Size distribution diagram of Al₂O₃ in three low alloy steel samples built up on results from advanced algorithms. Horizontal axis: average ESD. Vertical axis: number of inclusions per cubic mm

QUANTITATIVE DETERMINATION OF TOTAL OXYGEN CONTENT IN

COMBINED ANALYSIS

As mentioned above, elemental concentration and inclusion analyses are normally performed, and their results displayed simultaneously (FIGURE 7).

Figure 7. Results of a three runs analysis of a low alloy steel sample in OXSAS analytical software. **Results in concentration and from Spark-DAT** algorithms are mixed.

10	1445-FeO defect surface				C 7 JODHI - KLCa	у—этогалпс-т	LOS KJUY IUC - K	(ca)=5 for at Inc-	105 00010104	co o-coppin		
10	1445-FeO derect surrace	з - к(са)=5 г	or c								Carrona	
Task:				arameter	Value							
		Spark-DAT				ysis Date		11 14:23:46				
	Grade:						38345-L4					
Type Standard:				iple N°	AI=35 O=25ppm							
	Method:	DEMO-FEL	AST	+SDAT(2)			Manual averaging 🛛 👱					
				ſ		rance table	None		<u>×</u>			
					,							
R	esult Format	Spark-DAT			 Eleme 	ent Format Fro	om Method	~	Status			
Г	Flamont	Linita	87	AV/C						Grade Check :		
	Element	Units	٣		SD	SD% 7			₹ 🗹 3	Grade Check :		
Ŀ	AI	%	٣	0.0501	0.000300	0.60	0.04979	0.05039	₹ 3 0.05012	Grade Check :		
G	Al Al sol	% %	٣	0.0501 0.04725	0.000300 0.000780	0.60 1.65	0.04979 0.04664	0.05039	♥ 3 0.05012 0.04699	_] Grade Check :		
G	Al Al sol Al pk	% % Events		0.0501 0.04725 36	0.000300 0.000780 8	0.60 1.65 22.05	0.04979 0.04664 42	0.05039 0.04813 27	♥ ♥ 3 0.05012 0.04699 39	_ Grade Check :		
9	Al Al sol Al pk Al2O3 nb	% % Events Number		0.0501 0.04725 36 29	0.000300 0.000780	0.60 1.65 22.05 21.53	0.04979 0.04664 42 31	0.05039 0.04813 27 22	 ♥ ♥ 3 0.05012 0.04699 39 34 	_] Grade Check :		
000	Al Sol Al sol Al pk Al2O3 nb Al2O3 nb L	% % Events Number Number		0.0501 0.04725 36 29 6	0.000300 0.000780 8	0.60 1.65 22.05 21.53 16.67	0.04979 0.04664 42 31 7	0.05039 0.04813 27 22 6	 ♥ ♥ 3 0.05012 0.04699 39 34 5 	_] Grade Check :		
	Al Sol Al sol Al pk Al2O3 nb Al2O3 nb L Al2O3 nb M	% Events Number Number Number		0.0501 0.04725 36 29 6 5	0.000300 0.000780 8 6 1 1	0.60 1.65 22.05 21.53 16.67 12.37	0.04979 0.04664 42 31 7 4	0.05039 0.04813 27 22 6 5	 ♥ ♥ 3 0.05012 0.04699 39 34 5 5 	_] Grade Check :		
	Al sol Al sol Al pk Al2O3 nb Al2O3 nb L Al2O3 nb M Al2O3 nb S	% Events Number Number Number Number		0.0501 0.04725 36 29 6 5 18	0.000300 0.000780 8 6 1 1 7	0.60 1.65 22.05 21.53 16.67 12.37 36.32	0.04979 0.04664 42 31 7 4 20	0.05039 0.04813 27 22 6 5 11	 ♥ ♥ 3 0.05012 0.04699 39 34 5 5 24 	Grade Check :		
	 AI sol AI sol AI pk AI203 nb AI203 nb L AI203 nb M AI203 nb S AI203 ESD 	% Events Number Number Number Number		0.0501 0.04725 36 29 6 5 18 4.65	0.000300 0.000780 8 6 1 1 7 0.1537	0.60 1.65 22.05 21.53 16.67 12.37 36.32 3.31	0.04979 0.04664 42 31 7 4 20 4.60	0.05039 0.04813 27 22 6 5 11 4.82	 ♥ ♥ 3 0.05012 0.04699 39 34 5 5 24 4.53 	Grade Check :		
	 AI sol AI sol AI pk AI203 nb AI203 nb L AI203 nb M AI203 nb S AI203 ESD AI203 ESD L 	% Events Number Number Number µm µm		0.0501 0.04725 36 29 6 5 18 4.65 6.52	0.000300 0.000780 8 6 1 1 1 7 0.1537 0.2726	0.60 1.65 22.05 21.53 16.67 12.37 36.32 3.31 4.18	0.04979 0.04664 42 31 7 4 20 4.60 6.35	0.05039 0.04813 27 22 6 5 5 11 4.82 6.36	 ♥ ♥ 3 0.05012 0.04699 39 34 5 5 24 4.53 6.83 	Grade Check :		
	 AI sol AI sol AI pk AI203 nb AI203 nb L AI203 nb M AI203 nb S AI203 ESD L AI203 ESD M 	% Events Number Number Number Number µm µm		0.0501 0.04725 36 29 6 5 18 4.65 6.52 4.37	0.000300 0.000780 8 6 1 1 7 0.1537 0.2726 0.04617	0.60 1.65 22.05 21.53 16.67 12.37 36.32 3.31 4.18 1.06	0.04979 0.04664 42 31 7 4 20 4.60 6.35 4.32	0.05039 0.04813 27 22 6 5 11 4.82 6.36 4.41	 ♥ ♥ 3 0.05012 0.04699 39 34 5 5 24 4.53 6.83 4.38 	_ Grade Check :		
	 AI sol AI sol AI pk Al203 nb Al203 nb L Al203 nb M Al203 nb S Al203 ESD L Al203 ESD M Al203 ESD M 	% Events Number Number Number Number μm μm μm		0.0501 0.04725 36 29 6 5 18 4.65 6.52 4.37 3.57	0.000300 0.000780 8 6 1 1 7 0.1537 0.2726 0.04617 0.04135	0.60 1.65 22.05 21.53 16.67 12.37 36.32 3.31 4.18 1.06 1.16	0.04979 0.04664 42 31 7 4 20 4.60 6.35 4.32 3.55	0.05039 0.04813 27 22 6 5 5 11 4.82 6.36 4.41 3.55	 39 34 5 5 24 4.53 6.83 4.38 3.62 	_] Grade Check :		
	 AI sol AI sol AI pk AI203 nb AI203 nb L AI203 nb M AI203 nb S AI203 ESD L AI203 ESD M 	% Events Number Number Number Number µm µm		0.0501 0.04725 36 29 6 5 18 4.65 6.52 4.37 3.57	0.000300 0.000780 8 6 1 1 7 0.1537 0.2726 0.04617	0.60 1.65 22.05 21.53 16.67 12.37 36.32 3.31 4.18 1.06 1.16	0.04979 0.04664 42 31 7 4 20 4.60 6.35 4.32	0.05039 0.04813 27 22 6 5 11 4.82 6.36 4.41	 ♥ ♥ 3 0.05012 0.04699 39 34 5 5 24 4.53 6.83 4.38 	_ Grade Check :		

The intensity of a Spark-DAT signal depends on the composition of the sample at the position struck by the single spark. If the spark hits a sample area containing an AI based inclusion (e.g. AI_2O_3), the outcome is an intensity peak, because the AI concentration is much higher than in the metal matrix (FIGURE 1).

Figure 1. Principle of Spark-DAT illustrated for a steel sample containing Al₂O₃ inclusions of different sizes

The intensity of the baseline signal is proportional to the number of AI atoms dissolved in the metallic matrix and the intensity of a peak depends on the amount of Al atoms contained in the inclusion(s) ablated by a single spark.

		Sample 1	Sample 2
	Al tot	40	36
Peaks	O tot	57	40
Peaks	Ca tot	124	53
	S tot	22	9
	Al ₂ O ₃	0	5
Composition	Ca aluminate	10	2
composition	CaO	17	0
	CaS	20	0

Processing of intensities 500-2000

QUALITATIVE INCLUSION SIZE ANALYSIS

Knowing the size of the inclusions is important, since large inclusions are normally the most detrimental to steel quality. The algorithms can be used in order to count inclusions (peaks) belonging to different size (intensity) classes. Setting the threshold at 3 SD allows counting all the inclusions that are large enough to be detected. Setting it higher, for example at 9 or 15.SD, allows counting inclusions with larger size. Calculating the inclusions between consecutive threshold values provides the number of inclusions in the size class that they delimit. (FIGURE 3).

Figure 3. Peaks (Ca tot and S tot) and peak

KILLED STEELS

Oxygen at very low concentration in steel is normally analyzed using dedicated combustion analyzers, due to the relatively low sensitivity of its OES analytical line.

In killed steels most of the oxygen is insoluble, i.e. present in the form of inclusions. The total oxygen content can therefore be calculated from the oxygen contained in the inclusions measured with advanced algorithms, without using the oxygen optical channel (indirect oxygen determination).

This method is extremely quantitative below 50ppm, as demonstrated in FIGURES 5 and 6. For higher oxygen concentrations, the standard (direct) analysis with the oxygen channel may be the preferred method.

Figure 5. Oxygen concentration in low alloy steel samples taken in the continuous casting mould obtained with advanced algorithms and by combustion analysis (samples and combustion results with permission of R. Dumarey and F. Medina, from ArcelorMittal, Gent)

					,	 1.1 i 💷 1	Methods 🛛 🚭 View Results	Duantitative Analysis	< >
Edit	izj. Recalculate	Sa <u>v</u> e Modif		<u>C</u> ancel	ලි Process	sing			
+ O conc	/0 0.002	25 0.00040	10.54	0.0027	0.0020	0.0020			
	% 0.002	25 0.00046	18.54	0.0027	0.0020	0.0028			

REFERENCES

1. Böhlen J.-M., Li K., Dorier J.L. and Halász E., "Advances in the ultra-fast inclusion analysis in steel by spark-OES", Metallurgical Analysis, CETAS 2011 – 8th International Workshop on Progress in Analytical Chemistry and Materials Characterization in Steel and Metal Industries, Conference Proceedings, p. 101-108.

2. Böhlen J.-M. and Yellepeddi R., "Combined quantitative analysis and ultra-fast analysis of nonmetallic inclusions by optical emission spectrometry", Millennium Steel, 2009, p. 167-171.

3. Li K., Halász E. and Böhlen J.-M., "Analysis of inclusions in steel and aluminum with the ARL iSpark Spark-DAT – Recent improvements", Metallurgical Analysis, CCATM 2010 Conference Proceedings, Vol. 30, Supplement September 2010, p. 214-217.

Consequently, the number of peaks is related to the number of such inclusions and their intensity to factors like inclusion size and concentration of AI in the inclusion.

PRACTICAL DETAILS

Sample preparation

The standard OES sample preparation can be used for Spark-DAT inclusion analysis. However, with paper grinding, the paper should be chosen in order to avoid any contamination that can influence the analysis of the inclusions of interest (e.g. using SiC paper when AI_2O_3 inclusions have to be analyzed). For advanced, quantitative Spark-DAT applications, milling is advisable.

coincidences (CaS) counted at 3 different threshold values and corres- ponding numbers in classes small, medium and large

ThermoFisher SCIENTIFIC

Thermo Fisher Scientific • Chemin de Verney 2 • 1024 Ecublens • Switzerland • www.thermofisher.com